論文の概要: Search to aggregate neighborhood for graph neural network
- arxiv url: http://arxiv.org/abs/2104.06608v1
- Date: Wed, 14 Apr 2021 03:15:19 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-15 13:12:13.905915
- Title: Search to aggregate neighborhood for graph neural network
- Title(参考訳): グラフニューラルネットワークのためのアグリゲート近傍探索
- Authors: Huan Zhao, Quanming Yao, Weiwei Tu
- Abstract要約: そこで本研究では,データ固有のGNNアーキテクチャを自動的に設計するためのフレームワークとして,SANE(Search to Aggregate NEighborhood)を提案する。
新規で表現力のある検索空間を設計することにより,従来の強化学習法よりも効率的である微分可能な探索アルゴリズムを提案する。
- 参考スコア(独自算出の注目度): 47.47628113034479
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent years have witnessed the popularity and success of graph neural
networks (GNN) in various scenarios. To obtain data-specific GNN architectures,
researchers turn to neural architecture search (NAS), which has made impressive
success in discovering effective architectures in convolutional neural
networks. However, it is non-trivial to apply NAS approaches to GNN due to
challenges in search space design and the expensive searching cost of existing
NAS methods. In this work, to obtain the data-specific GNN architectures and
address the computational challenges facing by NAS approaches, we propose a
framework, which tries to Search to Aggregate NEighborhood (SANE), to
automatically design data-specific GNN architectures. By designing a novel and
expressive search space, we propose a differentiable search algorithm, which is
more efficient than previous reinforcement learning based methods. Experimental
results on four tasks and seven real-world datasets demonstrate the superiority
of SANE compared to existing GNN models and NAS approaches in terms of
effectiveness and efficiency. (Code is available at:
https://github.com/AutoML-4Paradigm/SANE).
- Abstract(参考訳): 近年、様々なシナリオでグラフニューラルネットワーク(GNN)の人気と成功を目撃している。
データ固有のgnnアーキテクチャを得るためには、畳み込みニューラルネットワークにおける効果的なアーキテクチャの発見で目覚ましい成功を収めたneural architecture search(nas)に目を向ける。
しかし,検索空間設計の課題や既存のNAS手法の高価な検索コストのため,NASアプローチをGNNに適用することは容易ではない。
本稿では,データ固有のgnnアーキテクチャを入手し,nasアプローチが直面する計算上の課題に対処するため,データ固有のgnnアーキテクチャを自動的に設計するsane(aggregate neighborhood)を探索するフレームワークを提案する。
新規で表現力豊かな探索空間を設計することにより,従来の強化学習法よりも効率的である識別可能な探索アルゴリズムを提案する。
4つのタスクと7つの実世界のデータセットの実験結果は、既存のGNNモデルやNASアプローチと比較して、SANEの有効性と効率性を示す。
(コードは、https://github.com/AutoML-4Paradigm/SANE)。
関連論文リスト
- DNA Family: Boosting Weight-Sharing NAS with Block-Wise Supervisions [121.05720140641189]
蒸留型ニューラルアーキテクチャ(DNA)技術を用いたモデル群を開発した。
提案するDNAモデルでは,アルゴリズムを用いてサブサーチ空間にのみアクセス可能な従来の手法とは対照的に,すべてのアーキテクチャ候補を評価できる。
当社のモデルでは,モバイルコンボリューションネットワークと小型ビジョントランスフォーマーにおいて,ImageNet上で78.9%,83.6%の最先端トップ1精度を実現している。
論文 参考訳(メタデータ) (2024-03-02T22:16:47Z) - Efficient and Explainable Graph Neural Architecture Search via
Monte-Carlo Tree Search [5.076419064097733]
グラフニューラルネットワーク(GNN)は、さまざまな領域でデータサイエンスタスクを実行する強力なツールである。
人的労力と計算コストを削減するため、グラフニューラルアーキテクチャ探索(Graph NAS)が準最適GNNアーキテクチャの探索に使用されている。
本稿では, (i) 様々なグラフに適応可能な単純な探索空間と, (ii) 決定プロセスを説明可能な検索アルゴリズムからなるExGNASを提案する。
論文 参考訳(メタデータ) (2023-08-30T03:21:45Z) - Do Not Train It: A Linear Neural Architecture Search of Graph Neural
Networks [15.823247346294089]
ニューラルアーキテクチャコーディング(NAC)という新しいNAS-GNN法を開発した。
当社のアプローチでは,最先端のパフォーマンスを実現しています。そのパフォーマンスは,強いベースラインよりも200倍高速で,18.8%の精度で実現しています。
論文 参考訳(メタデータ) (2023-05-23T13:44:04Z) - GeNAS: Neural Architecture Search with Better Generalization [14.92869716323226]
最近のニューラルアーキテクチャサーチ(NAS)アプローチは、対象データに対して優れたネットワークを見つけるために、検証損失または精度に依存している。
そこで本研究では,より一般化した探索型アーキテクチャのためのニューラルアーキテクチャ探索手法について検討する。
論文 参考訳(メタデータ) (2023-05-15T12:44:54Z) - GraphPNAS: Learning Distribution of Good Neural Architectures via Deep
Graph Generative Models [48.57083463364353]
ランダムグラフモデル学習のレンズを用いて,ニューラルアーキテクチャサーチ(NAS)について検討する。
本稿では,優れたアーキテクチャの分布を学習するグラフ生成モデルGraphPNASを提案する。
提案するグラフジェネレータは,RNNベースよりも一貫して優れており,最先端のNAS手法よりも優れた,あるいは同等のパフォーマンスを実現していることを示す。
論文 参考訳(メタデータ) (2022-11-28T09:09:06Z) - UnrealNAS: Can We Search Neural Architectures with Unreal Data? [84.78460976605425]
ニューラルアーキテクチャサーチ(NAS)はディープニューラルネットワーク(DNN)の自動設計において大きな成功を収めた。
これまでの研究は、NASに地道ラベルを持つことの必要性を分析し、幅広い関心を喚起した。
NASが有効であるためには、実際のデータが必要であるかどうか、さらに疑問を呈する。
論文 参考訳(メタデータ) (2022-05-04T16:30:26Z) - NAS-FCOS: Efficient Search for Object Detection Architectures [113.47766862146389]
簡易なアンカーフリー物体検出器の特徴ピラミッドネットワーク (FPN) と予測ヘッドを探索し, より効率的な物体検出手法を提案する。
慎重に設計された検索空間、検索アルゴリズム、ネットワーク品質を評価するための戦略により、8つのV100 GPUを使用して、4日以内に最高のパフォーマンスの検知アーキテクチャを見つけることができる。
論文 参考訳(メタデータ) (2021-10-24T12:20:04Z) - Going Beyond Neural Architecture Search with Sampling-based Neural
Ensemble Search [31.059040393415003]
本稿では,Nurural Ensemble Search via Smpling (NESS) フレームワークに基づく2つの新しいサンプリングアルゴリズムを提案する。
我々のNESSアルゴリズムは、分類タスクと対角防御タスクの両方において改善された性能を達成できることが示されている。
論文 参考訳(メタデータ) (2021-09-06T15:18:37Z) - Neural Architecture Search of SPD Manifold Networks [79.45110063435617]
本研究では,Symmetric Positive Definite (SPD) 多様体ネットワークのニューラルアーキテクチャ探索(NAS)問題を提案する。
まず、効率的なSPDセル設計のために、幾何学的にリッチで多様なSPDニューラルアーキテクチャ探索空間を導入する。
我々は、SPDニューラルアーキテクチャ探索のための緩和された連続探索空間上で微分可能なNASアルゴリズムを利用する。
論文 参考訳(メタデータ) (2020-10-27T18:08:57Z) - Simplifying Architecture Search for Graph Neural Network [38.45540097927176]
本稿では,新しい探索空間と強化学習に基づく探索アルゴリズムからなるSNAGフレームワークを提案する。
実世界のデータセットを用いた実験は、人間設計のGNNやNAS手法と比較してSNAGフレームワークの有効性を示す。
論文 参考訳(メタデータ) (2020-08-26T16:24:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。