Deep Evaluation Metric: Learning to Evaluate Simulated Radar Point
Clouds for Virtual Testing of Autonomous Driving
- URL: http://arxiv.org/abs/2104.06772v1
- Date: Wed, 14 Apr 2021 11:04:50 GMT
- Title: Deep Evaluation Metric: Learning to Evaluate Simulated Radar Point
Clouds for Virtual Testing of Autonomous Driving
- Authors: Anthony Ngo, Max Paul Bauer, Michael Resch
- Abstract summary: The usage of environment sensor models for virtual testing is a promising approach to reduce the testing effort of autonomous driving.
In this work, we train a neural network to distinguish real and simulated radar sensor data.
We propose the classifier's confidence score for the real radar point cloud' class as a metric to determine the degree of fidelity of synthetically generated radar data.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The usage of environment sensor models for virtual testing is a promising
approach to reduce the testing effort of autonomous driving. However, in order
to deduce any statements regarding the performance of an autonomous driving
function based on simulation, the sensor model has to be validated to determine
the discrepancy between the synthetic and real sensor data. Since a certain
degree of divergence can be assumed to exist, the sufficient level of fidelity
must be determined, which poses a major challenge. In particular, a method for
quantifying the fidelity of a sensor model does not exist and the problem of
defining an appropriate metric remains. In this work, we train a neural network
to distinguish real and simulated radar sensor data with the purpose of
learning the latent features of real radar point clouds. Furthermore, we
propose the classifier's confidence score for the `real radar point cloud'
class as a metric to determine the degree of fidelity of synthetically
generated radar data. The presented approach is evaluated and it can be
demonstrated that the proposed deep evaluation metric outperforms conventional
metrics in terms of its capability to identify characteristic differences
between real and simulated radar data.
Related papers
- Radar-Based Recognition of Static Hand Gestures in American Sign
Language [17.021656590925005]
This study explores the efficacy of synthetic data generated by an advanced radar ray-tracing simulator.
The simulator employs an intuitive material model that can be adjusted to introduce data diversity.
Despite exclusively training the NN on synthetic data, it demonstrates promising performance when put to the test with real measurement data.
arXiv Detail & Related papers (2024-02-20T08:19:30Z) - Physical-Layer Semantic-Aware Network for Zero-Shot Wireless Sensing [74.12670841657038]
Device-free wireless sensing has recently attracted significant interest due to its potential to support a wide range of immersive human-machine interactive applications.
Data heterogeneity in wireless signals and data privacy regulation of distributed sensing have been considered as the major challenges that hinder the wide applications of wireless sensing in large area networking systems.
We propose a novel zero-shot wireless sensing solution that allows models constructed in one or a limited number of locations to be directly transferred to other locations without any labeled data.
arXiv Detail & Related papers (2023-12-08T13:50:30Z) - Semantic Segmentation of Radar Detections using Convolutions on Point
Clouds [59.45414406974091]
We introduce a deep-learning based method to convolve radar detections into point clouds.
We adapt this algorithm to radar-specific properties through distance-dependent clustering and pre-processing of input point clouds.
Our network outperforms state-of-the-art approaches that are based on PointNet++ on the task of semantic segmentation of radar point clouds.
arXiv Detail & Related papers (2023-05-22T07:09:35Z) - Learning to Simulate Realistic LiDARs [66.7519667383175]
We introduce a pipeline for data-driven simulation of a realistic LiDAR sensor.
We show that our model can learn to encode realistic effects such as dropped points on transparent surfaces.
We use our technique to learn models of two distinct LiDAR sensors and use them to improve simulated LiDAR data accordingly.
arXiv Detail & Related papers (2022-09-22T13:12:54Z) - Bayesian Autoencoders for Drift Detection in Industrial Environments [69.93875748095574]
Autoencoders are unsupervised models which have been used for detecting anomalies in multi-sensor environments.
Anomalies can come either from real changes in the environment (real drift) or from faulty sensory devices (virtual drift)
arXiv Detail & Related papers (2021-07-28T10:19:58Z) - A Multi-Layered Approach for Measuring the Simulation-to-Reality Gap of
Radar Perception for Autonomous Driving [0.0]
In order to rely on virtual tests the employed sensor models have to be validated.
There exists no sound method to measure this simulation-to-reality gap of radar perception.
We have shown the effectiveness of the proposed approach in terms of providing an in-depth sensor model assessment.
arXiv Detail & Related papers (2021-06-15T18:51:39Z) - IntentNet: Learning to Predict Intention from Raw Sensor Data [86.74403297781039]
In this paper, we develop a one-stage detector and forecaster that exploits both 3D point clouds produced by a LiDAR sensor as well as dynamic maps of the environment.
Our multi-task model achieves better accuracy than the respective separate modules while saving computation, which is critical to reducing reaction time in self-driving applications.
arXiv Detail & Related papers (2021-01-20T00:31:52Z) - Deep Interference Mitigation and Denoising of Real-World FMCW Radar
Signals [16.748215232763517]
We evaluate a Convolutional Neural Network (CNN)-based approach for interference mitigation on real-world radar measurements.
We combine real measurements with simulated interference in order to create input-output data suitable for training the model.
arXiv Detail & Related papers (2020-12-04T11:22:13Z) - There and Back Again: Learning to Simulate Radar Data for Real-World
Applications [21.995474023869388]
We learn a radar sensor model capable of synthesising faithful radar observations based on simulated elevation maps.
We adopt an adversarial approach to learning a forward sensor model from unaligned radar examples.
We demonstrate the efficacy of our approach by evaluating a down-stream segmentation model trained purely on simulated data in a real-world deployment.
arXiv Detail & Related papers (2020-11-29T15:49:23Z) - Testing the Safety of Self-driving Vehicles by Simulating Perception and
Prediction [88.0416857308144]
We propose an alternative to sensor simulation, as sensor simulation is expensive and has large domain gaps.
We directly simulate the outputs of the self-driving vehicle's perception and prediction system, enabling realistic motion planning testing.
arXiv Detail & Related papers (2020-08-13T17:20:02Z) - A Sensitivity Analysis Approach for Evaluating a Radar Simulation for
Virtual Testing of Autonomous Driving Functions [0.0]
We introduce a sensitivity analysis approach for developing and evaluating a radar simulation.
A modular radar system simulation is presented and parameterized to conduct a sensitivity analysis.
We compare the output from the radar model to real driving measurements to ensure a realistic model behavior.
arXiv Detail & Related papers (2020-08-06T15:51:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.