Quantum Oracle Separations from Complex but Easily Specified States
- URL: http://arxiv.org/abs/2104.07247v1
- Date: Thu, 15 Apr 2021 05:40:38 GMT
- Title: Quantum Oracle Separations from Complex but Easily Specified States
- Authors: Nicholas LaRacuente
- Abstract summary: A quantum oracle is a black box unitary callable during quantum computation.
We constrain the marked state in ways that make it easy to specify classically while retaining separations in task complexity.
Using the fact that classically defined oracle may enable a quantum algorithm to prepare an otherwise hard state in steps, we observe quantum-classical oracle separation in heavy output sampling.
- Score: 1.52292571922932
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A foundational question in quantum computational complexity asks how much
more useful a quantum state can be in a given task than a comparable, classical
string. Aaronson and Kuperberg showed such a separation in the presence of a
quantum oracle, a black box unitary callable during quantum computation. Their
quantum oracle responds to a random, marked, quantum state, which is
intractable to specify classically. We constrain the marked state in ways that
make it easy to specify classically while retaining separations in task
complexity. Our method replaces query by state complexity. Furthermore,
assuming a widely believed separation between the difficulty of creating a
random, complex state and creating a specified state, we propose an
experimental demonstration of quantum witness advantage on near-term,
distributed quantum computers. Finally, using the fact that a standard,
classically defined oracle may enable a quantum algorithm to prepare an
otherwise hard state in polynomial steps, we observe quantum-classical oracle
separation in heavy output sampling.
Related papers
- Quantum algorithms: A survey of applications and end-to-end complexities [90.05272647148196]
The anticipated applications of quantum computers span across science and industry.
We present a survey of several potential application areas of quantum algorithms.
We outline the challenges and opportunities in each area in an "end-to-end" fashion.
arXiv Detail & Related papers (2023-10-04T17:53:55Z) - Learning marginals suffices! [14.322753787990036]
We investigate the relationship between the sample complexity of learning a quantum state and the circuit complexity of the state.
We show that learning its marginals for the quantum state with low circuit complexity suffices for state tomography.
arXiv Detail & Related papers (2023-03-15T21:09:29Z) - Quantum Merlin-Arthur proof systems for synthesizing quantum states [0.0]
We investigate a state synthesizing counterpart of the class NP-synthesizing.
We establish that the family of UQMA witnesses, considered as one of the most natural candidates, is in stateQMA.
We demonstrate that stateQCMA achieves perfect completeness.
arXiv Detail & Related papers (2023-03-03T12:14:07Z) - Quantum process tomography of continuous-variable gates using coherent
states [49.299443295581064]
We demonstrate the use of coherent-state quantum process tomography (csQPT) for a bosonic-mode superconducting circuit.
We show results for this method by characterizing a logical quantum gate constructed using displacement and SNAP operations on an encoded qubit.
arXiv Detail & Related papers (2023-03-02T18:08:08Z) - Sample-size-reduction of quantum states for the noisy linear problem [0.0]
We show that it is possible to reduce a quantum sample size in a quantum random access memory (QRAM) to the linearithmic order.
We achieve a shorter run-time for the noisy linear problem.
arXiv Detail & Related papers (2023-01-08T05:53:17Z) - Entanglement and coherence in Bernstein-Vazirani algorithm [58.720142291102135]
Bernstein-Vazirani algorithm allows one to determine a bit string encoded into an oracle.
We analyze in detail the quantum resources in the Bernstein-Vazirani algorithm.
We show that in the absence of entanglement, the performance of the algorithm is directly related to the amount of quantum coherence in the initial state.
arXiv Detail & Related papers (2022-05-26T20:32:36Z) - Depth-efficient proofs of quantumness [77.34726150561087]
A proof of quantumness is a type of challenge-response protocol in which a classical verifier can efficiently certify quantum advantage of an untrusted prover.
In this paper, we give two proof of quantumness constructions in which the prover need only perform constant-depth quantum circuits.
arXiv Detail & Related papers (2021-07-05T17:45:41Z) - Imaginary Time Propagation on a Quantum Chip [50.591267188664666]
Evolution in imaginary time is a prominent technique for finding the ground state of quantum many-body systems.
We propose an algorithm to implement imaginary time propagation on a quantum computer.
arXiv Detail & Related papers (2021-02-24T12:48:00Z) - Information Scrambling in Computationally Complex Quantum Circuits [56.22772134614514]
We experimentally investigate the dynamics of quantum scrambling on a 53-qubit quantum processor.
We show that while operator spreading is captured by an efficient classical model, operator entanglement requires exponentially scaled computational resources to simulate.
arXiv Detail & Related papers (2021-01-21T22:18:49Z) - Characterization of quantum states based on creation complexity [0.0]
The creation complexity of a quantum state is the minimum number of elementary gates required to create it from a basic initial state.
We show for an entirely general quantum state it is exponentially hard (requires a number of steps that scales exponentially with the number of qubits) to determine if the creation complexity is.
We then show it is possible for a large class of quantum states with creation complexity to have common coefficient features such that given any candidate quantum state we can design an efficient coefficient sampling procedure to determine if it belongs to the class or not with arbitrarily high success probability.
arXiv Detail & Related papers (2020-04-28T21:12:45Z) - Quantum supremacy in driven quantum many-body systems [0.0]
We show that quantum supremacy can be obtained in generic periodically-driven quantum many-body systems.
Our proposal opens the way for a large class of quantum platforms to demonstrate and benchmark quantum supremacy.
arXiv Detail & Related papers (2020-02-27T07:20:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.