Learning the Complexity of Weakly Noisy Quantum States
- URL: http://arxiv.org/abs/2303.17813v4
- Date: Wed, 21 May 2025 01:54:59 GMT
- Title: Learning the Complexity of Weakly Noisy Quantum States
- Authors: Yusen Wu, Bujiao Wu, Yanqi Song, Xiao Yuan, Jingbo B. Wang,
- Abstract summary: We present an efficient learning algorithm, that leverages the classical shadow representation of target quantum states, to predict the circuit complexity of weakly noisy quantum states.<n>Our result builds a bridge between the learning algorithm and quantum state complexity, highlighting the power of the learning algorithm in characterizing intrinsic properties of quantum states.
- Score: 0.5662299435213419
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantifying the complexity of quantum states is a longstanding key problem in various subfields of science, ranging from quantum computing to the black-hole theory. The lower bound on quantum pure state complexity has been shown to grow linearly with system size [Haferkamp et al., 2022]. However, extending this result to noisy circuit environments, which better reflect real quantum devices, remains an open challenge. In this paper, we explore the complexity of weakly noisy quantum states via the quantum learning method. We present an efficient learning algorithm, that leverages the classical shadow representation of target quantum states, to predict the circuit complexity of weakly noisy quantum states. Our algorithm is proved to be optimal in terms of sample complexity accompanied with polynomial classical processing time. Our result builds a bridge between the learning algorithm and quantum state complexity, meanwhile highlighting the power of learning algorithm in characterizing intrinsic properties of quantum states.
Related papers
- Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - Character Complexity: A Novel Measure for Quantum Circuit Analysis [0.0]
This paper introduces Character Complexity, a novel measure that bridges Group-theoretic concepts with practical quantum computing concerns.
I prove several key properties of character complexity and establish a surprising connection to the classical simulability of quantum circuits.
I present innovative visualization methods for character complexity, providing intuitive insights into the structure of quantum circuits.
arXiv Detail & Related papers (2024-08-19T01:58:54Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEA is an in-time sparse exploration for noise-adaptive quantum circuits.
It aims to achieve two key objectives: (1) implicit circuits capacity during training and (2) noise robustness.
Our method establishes state-of-the-art results with only half the number of quantum gates and 2x time saving of circuit executions.
arXiv Detail & Related papers (2024-01-10T22:33:00Z) - Quantum algorithms: A survey of applications and end-to-end complexities [90.05272647148196]
The anticipated applications of quantum computers span across science and industry.
We present a survey of several potential application areas of quantum algorithms.
We outline the challenges and opportunities in each area in an "end-to-end" fashion.
arXiv Detail & Related papers (2023-10-04T17:53:55Z) - Quantum benefit of the quantum equation of motion for the strongly
coupled many-body problem [0.0]
The quantum equation of motion (qEOM) is a hybrid quantum-classical algorithm for computing excitation properties of a fermionic many-body system.
We demonstrate explicitly that the qEOM exhibits a quantum benefit due to the independence of the number of required quantum measurements.
arXiv Detail & Related papers (2023-09-18T22:10:26Z) - Fighting noise with noise: a stochastic projective quantum eigensolver [0.0]
We present a novel approach to estimating physical observables which leads to a two order of magnitude reduction in the required sampling of the quantum state.
The method can be applied to excited-state calculations and simulation for general chemistry on quantum devices.
arXiv Detail & Related papers (2023-06-26T09:22:06Z) - Quantum Annealing for Single Image Super-Resolution [86.69338893753886]
We propose a quantum computing-based algorithm to solve the single image super-resolution (SISR) problem.
The proposed AQC-based algorithm is demonstrated to achieve improved speed-up over a classical analog while maintaining comparable SISR accuracy.
arXiv Detail & Related papers (2023-04-18T11:57:15Z) - Learning marginals suffices! [14.322753787990036]
We investigate the relationship between the sample complexity of learning a quantum state and the circuit complexity of the state.
We show that learning its marginals for the quantum state with low circuit complexity suffices for state tomography.
arXiv Detail & Related papers (2023-03-15T21:09:29Z) - Sample-size-reduction of quantum states for the noisy linear problem [0.0]
We show that it is possible to reduce a quantum sample size in a quantum random access memory (QRAM) to the linearithmic order.
We achieve a shorter run-time for the noisy linear problem.
arXiv Detail & Related papers (2023-01-08T05:53:17Z) - Quantum Clustering with k-Means: a Hybrid Approach [117.4705494502186]
We design, implement, and evaluate three hybrid quantum k-Means algorithms.
We exploit quantum phenomena to speed up the computation of distances.
We show that our hybrid quantum k-Means algorithms can be more efficient than the classical version.
arXiv Detail & Related papers (2022-12-13T16:04:16Z) - Quantum Oracle Separations from Complex but Easily Specified States [1.52292571922932]
A quantum oracle is a black box unitary callable during quantum computation.
We constrain the marked state in ways that make it easy to specify classically while retaining separations in task complexity.
Using the fact that classically defined oracle may enable a quantum algorithm to prepare an otherwise hard state in steps, we observe quantum-classical oracle separation in heavy output sampling.
arXiv Detail & Related papers (2021-04-15T05:40:38Z) - Error mitigation and quantum-assisted simulation in the error corrected
regime [77.34726150561087]
A standard approach to quantum computing is based on the idea of promoting a classically simulable and fault-tolerant set of operations.
We show how the addition of noisy magic resources allows one to boost classical quasiprobability simulations of a quantum circuit.
arXiv Detail & Related papers (2021-03-12T20:58:41Z) - Imaginary Time Propagation on a Quantum Chip [50.591267188664666]
Evolution in imaginary time is a prominent technique for finding the ground state of quantum many-body systems.
We propose an algorithm to implement imaginary time propagation on a quantum computer.
arXiv Detail & Related papers (2021-02-24T12:48:00Z) - Information Scrambling in Computationally Complex Quantum Circuits [56.22772134614514]
We experimentally investigate the dynamics of quantum scrambling on a 53-qubit quantum processor.
We show that while operator spreading is captured by an efficient classical model, operator entanglement requires exponentially scaled computational resources to simulate.
arXiv Detail & Related papers (2021-01-21T22:18:49Z) - Quantum circuit architecture search for variational quantum algorithms [88.71725630554758]
We propose a resource and runtime efficient scheme termed quantum architecture search (QAS)
QAS automatically seeks a near-optimal ansatz to balance benefits and side-effects brought by adding more noisy quantum gates.
We implement QAS on both the numerical simulator and real quantum hardware, via the IBM cloud, to accomplish data classification and quantum chemistry tasks.
arXiv Detail & Related papers (2020-10-20T12:06:27Z) - Robustness Verification of Quantum Classifiers [1.3534683694551501]
We define a formal framework for the verification and analysis of quantum machine learning algorithms against noises.
A robust bound is derived and an algorithm is developed to check whether or not a quantum machine learning algorithm is robust with respect to quantum training data.
Our approach is implemented on Google's Quantum classifier and can verify the robustness of quantum machine learning algorithms with respect to a small disturbance of noises.
arXiv Detail & Related papers (2020-08-17T11:56:23Z) - Minimizing estimation runtime on noisy quantum computers [0.0]
"engineered likelihood function" (ELF) is used for carrying out Bayesian inference.
We show how the ELF formalism enhances the rate of information gain in sampling as the physical hardware transitions from the regime of noisy quantum computers.
This technique speeds up a central component of many quantum algorithms, with applications including chemistry, materials, finance, and beyond.
arXiv Detail & Related papers (2020-06-16T17:46:18Z) - Characterization of quantum states based on creation complexity [0.0]
The creation complexity of a quantum state is the minimum number of elementary gates required to create it from a basic initial state.
We show for an entirely general quantum state it is exponentially hard (requires a number of steps that scales exponentially with the number of qubits) to determine if the creation complexity is.
We then show it is possible for a large class of quantum states with creation complexity to have common coefficient features such that given any candidate quantum state we can design an efficient coefficient sampling procedure to determine if it belongs to the class or not with arbitrarily high success probability.
arXiv Detail & Related papers (2020-04-28T21:12:45Z) - Simulating quantum chemistry in the seniority-zero space on qubit-based
quantum computers [0.0]
We combine the so-called seniority-zero, or paired-electron, approximation of computational quantum chemistry with techniques for simulating molecular chemistry on gate-based quantum computers.
We show that using the freed-up quantum resources for increasing the basis set can lead to more accurate results and reductions in the necessary number of quantum computing runs.
arXiv Detail & Related papers (2020-01-31T19:44:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.