A Simple Baseline for StyleGAN Inversion
- URL: http://arxiv.org/abs/2104.07661v1
- Date: Thu, 15 Apr 2021 17:59:49 GMT
- Title: A Simple Baseline for StyleGAN Inversion
- Authors: Tianyi Wei and Dongdong Chen and Wenbo Zhou and Jing Liao and Weiming
Zhang and Lu Yuan and Gang Hua and Nenghai Yu
- Abstract summary: StyleGAN inversion plays an essential role in enabling the pretrained StyleGAN to be used for real facial image editing tasks.
Existing optimization-based methods can produce high quality results, but the optimization often takes a long time.
We present a new feed-forward network for StyleGAN inversion, with significant improvement in terms of efficiency and quality.
- Score: 133.5868210969111
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper studies the problem of StyleGAN inversion, which plays an
essential role in enabling the pretrained StyleGAN to be used for real facial
image editing tasks. This problem has the high demand for quality and
efficiency. Existing optimization-based methods can produce high quality
results, but the optimization often takes a long time. On the contrary,
forward-based methods are usually faster but the quality of their results is
inferior. In this paper, we present a new feed-forward network for StyleGAN
inversion, with significant improvement in terms of efficiency and quality. In
our inversion network, we introduce: 1) a shallower backbone with multiple
efficient heads across scales; 2) multi-layer identity loss and multi-layer
face parsing loss to the loss function; and 3) multi-stage refinement.
Combining these designs together forms a simple and efficient baseline method
which exploits all benefits of optimization-based and forward-based methods.
Quantitative and qualitative results show that our method performs better than
existing forward-based methods and comparably to state-of-the-art
optimization-based methods, while maintaining the high efficiency as well as
forward-based methods. Moreover, a number of real image editing applications
demonstrate the efficacy of our method. Our project page is
~\url{https://wty-ustc.github.io/inversion}.
Related papers
- Improving Instance Optimization in Deformable Image Registration with Gradient Projection [7.6061804149819885]
Deformable image registration is inherently a multi-objective optimization problem.
These conflicting objectives often lead to poor optimization outcomes.
Deep learning methods have recently gained popularity in this domain due to their efficiency in processing large datasets.
arXiv Detail & Related papers (2024-10-21T08:27:13Z) - Towards Differentiable Multilevel Optimization: A Gradient-Based Approach [1.6114012813668932]
This paper introduces a novel gradient-based approach for multilevel optimization.
Our method significantly reduces computational complexity while improving both solution accuracy and convergence speed.
To the best of our knowledge, this is one of the first algorithms to provide a general version of implicit differentiation.
arXiv Detail & Related papers (2024-10-15T06:17:59Z) - PostEdit: Posterior Sampling for Efficient Zero-Shot Image Editing [63.38854614997581]
We introduce PostEdit, a method that incorporates a posterior scheme to govern the diffusion sampling process.
The proposed PostEdit achieves state-of-the-art editing performance while accurately preserving unedited regions.
The method is both inversion- and training-free, necessitating approximately 1.5 seconds and 18 GB of GPU memory to generate high-quality results.
arXiv Detail & Related papers (2024-10-07T09:04:50Z) - Learning Efficient and Effective Trajectories for Differential Equation-based Image Restoration [59.744840744491945]
We reformulate the trajectory optimization of this kind of method, focusing on enhancing both reconstruction quality and efficiency.
We propose cost-aware trajectory distillation to streamline complex paths into several manageable steps with adaptable sizes.
Experiments showcase the significant superiority of the proposed method, achieving a maximum PSNR improvement of 2.1 dB over state-of-the-art methods.
arXiv Detail & Related papers (2024-10-07T07:46:08Z) - Adaptive Image Registration: A Hybrid Approach Integrating Deep Learning
and Optimization Functions for Enhanced Precision [13.242184146186974]
We propose a single framework for image registration based on deep neural networks and optimization.
We show improvements of up to 1.6% in test data, while maintaining the same inference time, and a substantial 1.0% points performance gain in deformation field smoothness.
arXiv Detail & Related papers (2023-11-27T02:48:06Z) - HomOpt: A Homotopy-Based Hyperparameter Optimization Method [10.11271414863925]
We propose HomOpt, a data-driven approach based on a generalized additive model (GAM) surrogate combined with homotopy optimization.
We show how HomOpt can boost the performance and effectiveness of any given method with faster convergence to the optimum on continuous discrete, and categorical domain spaces.
arXiv Detail & Related papers (2023-08-07T06:01:50Z) - Sample Less, Learn More: Efficient Action Recognition via Frame Feature
Restoration [59.6021678234829]
We propose a novel method to restore the intermediate features for two sparsely sampled and adjacent video frames.
With the integration of our method, the efficiency of three commonly used baselines has been improved by over 50%, with a mere 0.5% reduction in recognition accuracy.
arXiv Detail & Related papers (2023-07-27T13:52:42Z) - StyleSwap: Style-Based Generator Empowers Robust Face Swapping [90.05775519962303]
We introduce a concise and effective framework named StyleSwap.
Our core idea is to leverage a style-based generator to empower high-fidelity and robust face swapping.
We identify that with only minimal modifications, a StyleGAN2 architecture can successfully handle the desired information from both source and target.
arXiv Detail & Related papers (2022-09-27T16:35:16Z) - Low-light Image Enhancement by Retinex Based Algorithm Unrolling and
Adjustment [50.13230641857892]
We propose a new deep learning framework for the low-light image enhancement (LIE) problem.
The proposed framework contains a decomposition network inspired by algorithm unrolling, and adjustment networks considering both global brightness and local brightness sensitivity.
Experiments on a series of typical LIE datasets demonstrated the effectiveness of the proposed method, both quantitatively and visually, as compared with existing methods.
arXiv Detail & Related papers (2022-02-12T03:59:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.