論文の概要: Variational Inference for Category Recommendation in E-Commerce
platforms
- arxiv url: http://arxiv.org/abs/2104.07748v2
- Date: Mon, 19 Apr 2021 02:35:14 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-20 14:50:56.164072
- Title: Variational Inference for Category Recommendation in E-Commerce
platforms
- Title(参考訳): 電子商取引プラットフォームにおけるカテゴリー勧告の変分推論
- Authors: Ramasubramanian Balasubramanian, Venugopal Mani, Abhinav Mathur,
Sushant Kumar, Kannan Achan
- Abstract要約: eコマースプラットフォーム上のユーザのカテゴリレコメンデーションは、Webサイトのトラフィックの流れを規定する上で重要なタスクである。
したがって、利用者がプラットフォームを旅するのを助け、新しいカテゴリーの発見を支援するために、正確で多様なカテゴリーの推奨事項を提示することが重要である。
- 参考スコア(独自算出の注目度): 10.64460581091531
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Category recommendation for users on an e-Commerce platform is an important
task as it dictates the flow of traffic through the website. It is therefore
important to surface precise and diverse category recommendations to aid the
users' journey through the platform and to help them discover new groups of
items. An often understated part in category recommendation is users'
proclivity to repeat purchases. The structure of this temporal behavior can be
harvested for better category recommendations and in this work, we attempt to
harness this through variational inference. Further, to enhance the variational
inference based optimization, we initialize the optimizer at better starting
points through the well known Metapath2Vec algorithm. We demonstrate our
results on two real-world datasets and show that our model outperforms standard
baseline methods.
- Abstract(参考訳): eコマースプラットフォーム上のユーザのカテゴリレコメンデーションは、Webサイトのトラフィックの流れを規定する上で重要なタスクである。
したがって、利用者がプラットフォームを旅するのを助け、新しいカテゴリーの発見を支援するために、正確で多様なカテゴリーの推奨事項を提示することが重要である。
カテゴリーレコメンデーションでしばしば過小評価される部分は、購入を繰り返すユーザーの傾向である。
この時間的行動の構造はより優れたカテゴリーの推薦のために収集することができ、本研究では変分推論によってこれを活用しようと試みる。
さらに、変分推論に基づく最適化を強化するために、よく知られたmetapath2vecアルゴリズムを用いて最適化器をより良い出発点に初期化する。
実世界の2つのデータセットで結果を実証し、我々のモデルが標準ベースライン法より優れていることを示す。
関連論文リスト
- Interactive Visualization Recommendation with Hier-SUCB [52.11209329270573]
本稿では,従来のインタラクションからユーザフィードバックを学習する対話型パーソナライズドビジュアライゼーションレコメンデーション(PVisRec)システムを提案する。
よりインタラクティブで正確なレコメンデーションのために、PVisRec設定における文脈的半帯域であるHier-SUCBを提案する。
論文 参考訳(メタデータ) (2025-02-05T17:14:45Z) - Centrality-aware Product Retrieval and Ranking [14.710718676076327]
本稿では,ユーザの検索クエリに関連する製品ランキングを強化することで,eコマースプラットフォーム上でのユーザエクスペリエンス向上の課題に対処する。
eBayのサンプルをキュレートし、購入者中心の関連スコアと集中度スコアを手作業でアノテートしました。
本稿では,既存モデルに対するユーザインテリジェンス中心性最適化(UCO)アプローチを提案する。
論文 参考訳(メタデータ) (2024-10-21T11:59:14Z) - An incremental preference elicitation-based approach to learning potentially non-monotonic preferences in multi-criteria sorting [53.36437745983783]
まず最適化モデルを構築し,非単調な選好をモデル化する。
本稿では,情報量測定手法と質問選択戦略を考案し,各イテレーションにおいて最も情報に富む選択肢を特定する。
2つのインクリメンタルな選好に基づくアルゴリズムは、潜在的に単調な選好を学習するために開発された。
論文 参考訳(メタデータ) (2024-09-04T14:36:20Z) - Multi-output Headed Ensembles for Product Item Classification [0.9053163124987533]
本稿では,eコマースカタログを対象としたディープラーニングに基づく分類モデルフレームワークを提案する。
我々は、ロバストな業界標準ベースラインモデルに対する改善を示す。
また,ユーザセッションを用いたモデル性能評価手法を提案する。
論文 参考訳(メタデータ) (2023-07-29T01:23:36Z) - ItemSage: Learning Product Embeddings for Shopping Recommendations at
Pinterest [60.841761065439414]
Pinterestでは、ItemSageと呼ばれるプロダクトの埋め込みセットを構築して、すべてのショッピングユースケースに適切なレコメンデーションを提供しています。
このアプローチによって、エンゲージメントとコンバージョンメトリクスが大幅に改善され、インフラストラクチャとメンテナンスコストの両方が削減された。
論文 参考訳(メタデータ) (2022-05-24T02:28:58Z) - On component interactions in two-stage recommender systems [82.38014314502861]
2段階のレコメンデータは、YouTube、LinkedIn、Pinterestなど、多くのオンラインプラットフォームで使用されている。
ランク付け器と評価器の相互作用が全体の性能に大きく影響していることが示される。
特に、Mixture-of-Expertsアプローチを用いて、アイテムプールの異なるサブセットに特化するように、ノミネータを訓練する。
論文 参考訳(メタデータ) (2021-06-28T20:53:23Z) - Personalized Embedding-based e-Commerce Recommendations at eBay [3.1236273633321416]
電子商取引市場において,同じベクトル空間にアイテムやユーザを埋め込むことで,パーソナライズされたアイテムレコメンデーションを生成するアプローチを提案する。
データアブレーションは、生産システムの堅牢性を改善するために、オフラインモデルのトレーニングプロセスに組み込まれます。
論文 参考訳(メタデータ) (2021-02-11T17:58:51Z) - A Real-Time Whole Page Personalization Framework for E-Commerce [13.254747746069139]
eコマースプラットフォームは、ホームページに複数のカルーセルを含んでいる。
カルーセル内のアイテムは、シーケンシャルユーザーアクションに基づいて動的に変更されます。
ウォルマートオンライン食料品のホームページで、アイテムカルーセルをリアルタイムで最適にランク付けするためのスケーラブルなエンドツーエンド生産システムを紹介します。
論文 参考訳(メタデータ) (2020-12-08T19:08:41Z) - CRACT: Cascaded Regression-Align-Classification for Robust Visual
Tracking [97.84109669027225]
改良された提案改良モジュールCascaded Regression-Align- Classification (CRAC)を導入する。
CRACは多くのベンチマークで最先端のパフォーマンスを得る。
OTB-2015、UAV123、NfS、VOT-2018、TrackingNet、GOT-10k、LaSOTを含む7つのベンチマークの実験において、我々のCRACTは最先端の競合他社と比較して非常に有望な結果を示している。
論文 参考訳(メタデータ) (2020-11-25T02:18:33Z) - Towards Comprehensive Recommender Systems: Time-Aware
UnifiedcRecommendations Based on Listwise Ranking of Implicit Cross-Network
Data [33.17802459749589]
我々は,コールドスタートとデータ空間の問題を軽減するために,新しい深層学習に基づく統合型クロスネットワークソリューションを提案する。
提案手法は精度,ノベルティ,多様性の点で優れていることを示す。
人気の高いMovieLensデータセットを用いて行った実験から,提案手法が既存の最先端ランキング技術より優れていることが示唆された。
論文 参考訳(メタデータ) (2020-08-25T08:08:03Z) - MetaSelector: Meta-Learning for Recommendation with User-Level Adaptive
Model Selection [110.87712780017819]
推薦システムにおけるユーザレベルの適応モデル選択を容易にするメタラーニングフレームワークを提案する。
2つのパブリックデータセットと実世界のプロダクションデータセットで実験を行います。
論文 参考訳(メタデータ) (2020-01-22T16:05:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。