論文の概要: Finding Motifs in Knowledge Graphs using Compression
- arxiv url: http://arxiv.org/abs/2104.08163v1
- Date: Fri, 16 Apr 2021 15:20:44 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-19 18:38:52.570763
- Title: Finding Motifs in Knowledge Graphs using Compression
- Title(参考訳): 圧縮を用いた知識グラフのモチーフ発見
- Authors: Peter Bloem
- Abstract要約: 本稿では,知識グラフにネットワークモチーフを求める手法を提案する。
基本的なグラフパターンと一致するように、ネットワークモチーフの共通定義を拡張します。
得られたモチーフがグラフの基本構造を反映していることを示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We introduce a method to find network motifs in knowledge graphs. Network
motifs are useful patterns or meaningful subunits of the graph that recur
frequently. We extend the common definition of a network motif to coincide with
a basic graph pattern. We introduce an approach, inspired by recent work for
simple graphs, to induce these from a given knowledge graph, and show that the
motifs found reflect the basic structure of the graph. Specifically, we show
that in random graphs, no motifs are found, and that when we insert a motif
artificially, it can be detected. Finally, we show the results of motif
induction on three real-world knowledge graphs.
- Abstract(参考訳): 本稿では,知識グラフにネットワークモチーフを求める手法を提案する。
ネットワークモチーフは、頻繁に繰り返されるグラフの有用なパターンや意味のあるサブユニットである。
ネットワークモチーフの共通定義を基本グラフパターンと一致するように拡張する。
単純なグラフに対する最近の研究に触発され、与えられた知識グラフからこれらを誘導するアプローチを導入し、得られたモチーフがグラフの基本構造を反映していることを示す。
具体的には,ランダムグラフではモチーフが見つからず,モチーフを人工的に挿入すると検出できることを示す。
最後に、3つの実世界の知識グラフにモチーフ誘導の結果を示す。
関連論文リスト
- Graph-Level Embedding for Time-Evolving Graphs [24.194795771873046]
グラフ表現学習(ネットワーク埋め込みとも呼ばれる)は、様々なレベルの粒度で広く研究されている。
本稿では,このギャップに対処する時間グラフレベルの埋め込み手法を提案する。
論文 参考訳(メタデータ) (2023-06-01T01:50:37Z) - Spectral Augmentations for Graph Contrastive Learning [50.149996923976836]
コントラスト学習は、監督の有無にかかわらず、表現を学習するための第一の方法として現れてきた。
近年の研究では、グラフ表現学習における事前学習の有用性が示されている。
本稿では,グラフの対照的な目的に対する拡張を構築する際に,候補のバンクを提供するためのグラフ変換操作を提案する。
論文 参考訳(メタデータ) (2023-02-06T16:26:29Z) - MotifExplainer: a Motif-based Graph Neural Network Explainer [19.64574177805823]
本稿では,グラフにおける重要なモチーフ,繰り返し,統計的に重要なパターンを同定し,グラフニューラルネットワーク(GNN)を説明する新しい手法を提案する。
提案手法は,ノード,エッジ,正規部分グラフに基づく手法よりも,人間に理解可能な説明を提供する。
論文 参考訳(メタデータ) (2022-02-01T16:11:21Z) - Joint Graph Learning and Matching for Semantic Feature Correspondence [69.71998282148762]
本稿では,グラフマッチングを向上するための信頼度の高いグラフ構造を探索するために,GLAMという共用電子グラフ学習とマッチングネットワークを提案する。
提案手法は,3つの人気ビジュアルマッチングベンチマーク (Pascal VOC, Willow Object, SPair-71k) で評価される。
すべてのベンチマークにおいて、従来の最先端のグラフマッチング手法よりも大きなマージンを達成している。
論文 参考訳(メタデータ) (2021-09-01T08:24:02Z) - ExplaGraphs: An Explanation Graph Generation Task for Structured
Commonsense Reasoning [65.15423587105472]
スタンス予測のための説明グラフ生成の新しい生成および構造化コモンセンスリゾニングタスク(および関連するデータセット)を紹介します。
具体的には、信念と議論が与えられた場合、モデルは、議論が信念を支持しているかどうかを予測し、予測されたスタンスに対する非自明で完全で曖昧な説明として機能する常識強化グラフを生成する必要がある。
グラフの83%は、様々な構造と推論深度を持つ外部のコモンセンスノードを含んでいる。
論文 参考訳(メタデータ) (2021-04-15T17:51:36Z) - Generating a Doppelganger Graph: Resembling but Distinct [5.618335078130568]
本論文では,与えられたグラフ特性に類似したドッペルガンガーグラフを生成する手法を提案する。
このアプローチは、グラフ表現学習、生成的敵ネットワーク、およびグラフ実現アルゴリズムのオーケストレーションである。
論文 参考訳(メタデータ) (2021-01-23T22:08:27Z) - GraphOpt: Learning Optimization Models of Graph Formation [72.75384705298303]
本稿では,グラフ構造形成の暗黙的モデルを学ぶエンドツーエンドフレームワークを提案し,その基盤となる最適化機構を明らかにする。
学習した目的は、観測されたグラフプロパティの説明として機能し、ドメイン内の異なるグラフを渡すために自分自身を貸すことができる。
GraphOptは、グラフ内のリンク生成をシーケンシャルな意思決定プロセスとして、最大エントロピー逆強化学習アルゴリズムを用いて解決する。
論文 参考訳(メタデータ) (2020-07-07T16:51:39Z) - The Power of Graph Convolutional Networks to Distinguish Random Graph
Models: Short Version [27.544219236164764]
グラフ畳み込みネットワーク(GCN)はグラフ表現学習において広く使われている手法である。
サンプルグラフの埋め込みに基づいて異なるランダムグラフモデルを区別するGCNのパワーについて検討する。
論文 参考訳(メタデータ) (2020-02-13T17:58:42Z) - Bridging Knowledge Graphs to Generate Scene Graphs [49.69377653925448]
本稿では,2つのグラフ間の情報伝達を反復的に行う新しいグラフベースニューラルネットワークを提案する。
我々のグラフブリッジネットワークであるGB-Netは、エッジとノードを連続的に推論し、相互接続されたシーンとコモンセンスグラフのリッチでヘテロジニアスな構造を同時に活用し、洗練する。
論文 参考訳(メタデータ) (2020-01-07T23:35:52Z) - Deep Learning for Learning Graph Representations [58.649784596090385]
グラフデータのマイニングはコンピュータ科学においてポピュラーな研究トピックとなっている。
ネットワークデータの膨大な量は、効率的な分析に大きな課題をもたらしている。
これはグラフ表現の出現を動機付け、グラフを低次元ベクトル空間にマッピングする。
論文 参考訳(メタデータ) (2020-01-02T02:13:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。