Fuzzy Discriminant Clustering with Fuzzy Pairwise Constraints
- URL: http://arxiv.org/abs/2104.08546v1
- Date: Sat, 17 Apr 2021 13:58:10 GMT
- Title: Fuzzy Discriminant Clustering with Fuzzy Pairwise Constraints
- Authors: Zhen Wang, Shan-Shan Wang, Lan Bai, Wen-Si Wang, Yuan-Hai Shao
- Abstract summary: In semi-supervised fuzzy clustering, this paper extends the traditional must-link or cannot-link constraint to fuzzy pairwise constraint.
The fuzzy pairwise constraint allows a supervisor to provide the grade of similarity or dissimilarity between fuzzy fuzzy spaces.
- Score: 7.527846230182886
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In semi-supervised fuzzy clustering, this paper extends the traditional
pairwise constraint (i.e., must-link or cannot-link) to fuzzy pairwise
constraint. The fuzzy pairwise constraint allows a supervisor to provide the
grade of similarity or dissimilarity between the implicit fuzzy vectors of a
pair of samples. This constraint can present more complicated relationship
between the pair of samples and avoid eliminating the fuzzy characteristics. We
propose a fuzzy discriminant clustering model (FDC) to fuse the fuzzy pairwise
constraints. The nonconvex optimization problem in our FDC is solved by a
modified expectation-maximization algorithm, involving to solve several
indefinite quadratic programming problems (IQPPs). Further, a diagonal block
coordinate decent (DBCD) algorithm is proposed for these IQPPs, whose
stationary points are guaranteed, and the global solutions can be obtained
under certain conditions. To suit for different applications, the FDC is
extended into various metric spaces, e.g., the Reproducing Kernel Hilbert
Space. Experimental results on several benchmark datasets and facial expression
database demonstrate the outperformance of our FDC compared with some
state-of-the-art clustering models.
Related papers
- Maximum a Posteriori Inference for Factor Graphs via Benders' Decomposition [0.38233569758620056]
We present a method for maximum a-posteriori inference in general Bayesian factor models.
We derive MAP estimation algorithms for the Bayesian Gaussian mixture model and latent Dirichlet allocation.
arXiv Detail & Related papers (2024-10-24T19:57:56Z) - A Contrastive Variational Graph Auto-Encoder for Node Clustering [10.52321770126932]
State-of-the-art clustering methods have numerous challenges.
Existing VGAEs do not account for the discrepancy between the inference and generative models.
Our solution has two mechanisms to control the trade-off between Feature Randomness and Feature Drift.
arXiv Detail & Related papers (2023-12-28T05:07:57Z) - ALEXR: An Optimal Single-Loop Algorithm for Convex Finite-Sum Coupled Compositional Stochastic Optimization [53.14532968909759]
We introduce an efficient single-loop primal-dual block-coordinate algorithm, dubbed ALEXR.
We establish the convergence rates of ALEXR in both convex and strongly convex cases under smoothness and non-smoothness conditions.
We present lower complexity bounds to demonstrate that the convergence rates of ALEXR are optimal among first-order block-coordinate algorithms for the considered class of cFCCO problems.
arXiv Detail & Related papers (2023-12-04T19:00:07Z) - Multi-Agent Bayesian Optimization with Coupled Black-Box and Affine
Constraints [21.38692458445459]
We study the problem of distributed multi-agent Bayesian optimization with both coupled black-box constraints and known affine constraints.
A primal-dual distributed algorithm is proposed that achieves similar regret/violation bounds as those in the single-agent case.
arXiv Detail & Related papers (2023-10-02T08:07:36Z) - Fully Stochastic Trust-Region Sequential Quadratic Programming for
Equality-Constrained Optimization Problems [62.83783246648714]
We propose a sequential quadratic programming algorithm (TR-StoSQP) to solve nonlinear optimization problems with objectives and deterministic equality constraints.
The algorithm adaptively selects the trust-region radius and, compared to the existing line-search StoSQP schemes, allows us to utilize indefinite Hessian matrices.
arXiv Detail & Related papers (2022-11-29T05:52:17Z) - Optimal variance-reduced stochastic approximation in Banach spaces [114.8734960258221]
We study the problem of estimating the fixed point of a contractive operator defined on a separable Banach space.
We establish non-asymptotic bounds for both the operator defect and the estimation error.
arXiv Detail & Related papers (2022-01-21T02:46:57Z) - A Variational Inference Approach to Inverse Problems with Gamma
Hyperpriors [60.489902135153415]
This paper introduces a variational iterative alternating scheme for hierarchical inverse problems with gamma hyperpriors.
The proposed variational inference approach yields accurate reconstruction, provides meaningful uncertainty quantification, and is easy to implement.
arXiv Detail & Related papers (2021-11-26T06:33:29Z) - Spatially relaxed inference on high-dimensional linear models [48.989769153211995]
We study the properties of ensembled clustered inference algorithms which combine spatially constrained clustering, statistical inference, and ensembling to aggregate several clustered inference solutions.
We show that ensembled clustered inference algorithms control the $delta$-FWER under standard assumptions for $delta$ equal to the largest cluster diameter.
arXiv Detail & Related papers (2021-06-04T16:37:19Z) - Efficient Methods for Structured Nonconvex-Nonconcave Min-Max
Optimization [98.0595480384208]
We propose a generalization extraient spaces which converges to a stationary point.
The algorithm applies not only to general $p$-normed spaces, but also to general $p$-dimensional vector spaces.
arXiv Detail & Related papers (2020-10-31T21:35:42Z) - A Feasible Level Proximal Point Method for Nonconvex Sparse Constrained
Optimization [25.73397307080647]
We present a new model of a general convex or non objective machine machine objectives.
We propose an algorithm that solves a constraint with gradually relaxed point levels of each subproblem.
We demonstrate the effectiveness of our new numerical scale problems.
arXiv Detail & Related papers (2020-10-23T05:24:05Z) - Consistent Second-Order Conic Integer Programming for Learning Bayesian
Networks [2.7473982588529653]
We study the problem of learning the sparse DAG structure of a BN from continuous observational data.
The optimal solution to this mathematical program is known to have desirable statistical properties under certain conditions.
We propose a concrete early stopping criterion to terminate the branch-and-bound process in order to obtain a near-optimal solution.
arXiv Detail & Related papers (2020-05-29T00:13:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.