CGAM: Click-Guided Attention Module for Interactive Pathology Image
Segmentation via Backpropagating Refinement
- URL: http://arxiv.org/abs/2307.01015v1
- Date: Mon, 3 Jul 2023 13:45:24 GMT
- Title: CGAM: Click-Guided Attention Module for Interactive Pathology Image
Segmentation via Backpropagating Refinement
- Authors: Seonghui Min, Won-Ki Jeong
- Abstract summary: Tumor region segmentation is an essential task for the quantitative analysis of digital pathology.
Recent deep neural networks have shown state-of-the-art performance in various image-segmentation tasks.
We propose an interactive segmentation method that allows users to refine the output of deep neural networks through click-type user interactions.
- Score: 8.590026259176806
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Tumor region segmentation is an essential task for the quantitative analysis
of digital pathology. Recently presented deep neural networks have shown
state-of-the-art performance in various image-segmentation tasks. However,
because of the unclear boundary between the cancerous and normal regions in
pathology images, despite using modern methods, it is difficult to produce
satisfactory segmentation results in terms of the reliability and accuracy
required for medical data. In this study, we propose an interactive
segmentation method that allows users to refine the output of deep neural
networks through click-type user interactions. The primary method is to
formulate interactive segmentation as an optimization problem that leverages
both user-provided click constraints and semantic information in a feature map
using a click-guided attention module (CGAM). Unlike other existing methods,
CGAM avoids excessive changes in segmentation results, which can lead to the
overfitting of user clicks. Another advantage of CGAM is that the model size is
independent of input image size. Experimental results on pathology image
datasets indicated that our method performs better than existing
state-of-the-art methods.
Related papers
- Dual-scale Enhanced and Cross-generative Consistency Learning for Semi-supervised Medical Image Segmentation [49.57907601086494]
Medical image segmentation plays a crucial role in computer-aided diagnosis.
We propose a novel Dual-scale Enhanced and Cross-generative consistency learning framework for semi-supervised medical image (DEC-Seg)
arXiv Detail & Related papers (2023-12-26T12:56:31Z) - Self-Supervised Correction Learning for Semi-Supervised Biomedical Image
Segmentation [84.58210297703714]
We propose a self-supervised correction learning paradigm for semi-supervised biomedical image segmentation.
We design a dual-task network, including a shared encoder and two independent decoders for segmentation and lesion region inpainting.
Experiments on three medical image segmentation datasets for different tasks demonstrate the outstanding performance of our method.
arXiv Detail & Related papers (2023-01-12T08:19:46Z) - Reliable Joint Segmentation of Retinal Edema Lesions in OCT Images [55.83984261827332]
In this paper, we propose a novel reliable multi-scale wavelet-enhanced transformer network.
We develop a novel segmentation backbone that integrates a wavelet-enhanced feature extractor network and a multi-scale transformer module.
Our proposed method achieves better segmentation accuracy with a high degree of reliability as compared to other state-of-the-art segmentation approaches.
arXiv Detail & Related papers (2022-12-01T07:32:56Z) - Learning of Inter-Label Geometric Relationships Using Self-Supervised
Learning: Application To Gleason Grade Segmentation [4.898744396854313]
We propose a method to synthesize for PCa histopathology images by learning the geometrical relationship between different disease labels.
We use a weakly supervised segmentation approach that uses Gleason score to segment the diseased regions.
The resulting segmentation map is used to train a Shape Restoration Network (ShaRe-Net) to predict missing mask segments.
arXiv Detail & Related papers (2021-10-01T13:47:07Z) - Uncertainty-Based Dynamic Graph Neighborhoods For Medical Segmentation [0.0]
Post-processing and refining the results of segmentation is a common practice to decrease the misclassifications originating from the segmentation network.
A graph-based approach makes use of certain and uncertain points in a graph and refines the segmentation according to a small graph convolutional network (GCN)
We propose a new neighbor-selection mechanism according to feature distances and combine the two networks in the training procedure.
arXiv Detail & Related papers (2021-08-06T13:39:35Z) - Left Ventricle Contouring in Cardiac Images Based on Deep Reinforcement
Learning [0.12891210250935145]
We propose a new iterative refined interactive segmentation method for medical images based on agent reinforcement learning.
We model the dynamic process of drawing the target contour in a certain order as a Markov Decision Process (MDP) based on a deep reinforcement learning method.
Experimental results show that our method has a better segmentation effect on the left ventricle in a small number of medical image data sets.
arXiv Detail & Related papers (2021-06-08T06:30:32Z) - Learning Fuzzy Clustering for SPECT/CT Segmentation via Convolutional
Neural Networks [5.3123694982708365]
Quantitative bone single-photon emission computed tomography (QBSPECT) has the potential to provide a better quantitative assessment of bone metastasis than planar bone scintigraphy.
The segmentation of anatomical regions-of-interests (ROIs) still relies heavily on the manual delineation by experts.
This work proposes a fast and robust automated segmentation method for partitioning a QBSPECT image into lesion, bone, and background.
arXiv Detail & Related papers (2021-04-17T19:03:52Z) - Few-shot Medical Image Segmentation using a Global Correlation Network
with Discriminative Embedding [60.89561661441736]
We propose a novel method for few-shot medical image segmentation.
We construct our few-shot image segmentor using a deep convolutional network trained episodically.
We enhance discriminability of deep embedding to encourage clustering of the feature domains of the same class.
arXiv Detail & Related papers (2020-12-10T04:01:07Z) - Pathological Retinal Region Segmentation From OCT Images Using Geometric
Relation Based Augmentation [84.7571086566595]
We propose improvements over previous GAN-based medical image synthesis methods by jointly encoding the intrinsic relationship of geometry and shape.
The proposed method outperforms state-of-the-art segmentation methods on the public RETOUCH dataset having images captured from different acquisition procedures.
arXiv Detail & Related papers (2020-03-31T11:50:43Z) - Unsupervised Bidirectional Cross-Modality Adaptation via Deeply
Synergistic Image and Feature Alignment for Medical Image Segmentation [73.84166499988443]
We present a novel unsupervised domain adaptation framework, named as Synergistic Image and Feature Alignment (SIFA)
Our proposed SIFA conducts synergistic alignment of domains from both image and feature perspectives.
Experimental results on two different tasks demonstrate that our SIFA method is effective in improving segmentation performance on unlabeled target images.
arXiv Detail & Related papers (2020-02-06T13:49:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.