A non-perturbative no-go theorem for photon condensation in approximate
models
- URL: http://arxiv.org/abs/2104.09468v5
- Date: Tue, 20 Dec 2022 15:07:17 GMT
- Title: A non-perturbative no-go theorem for photon condensation in approximate
models
- Authors: G.M. Andolina, F.M.D. Pellegrino, A. Mercurio, O. Di Stefano, M.
Polini, and S. Savasta
- Abstract summary: We show a general no-go theorem valid for truncated, gauge-invariant models.
We explicitly consider the cases of interacting electrons in a lattice and $M$-level systems.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Equilibrium phase transitions between a normal and a photon condensate state
(also known as superradiant phase transitions) are a highly debated research
topic, where proposals for their occurrence and no-go theorems have chased each
other for the past four decades. Recent no-go theorems have demonstrated that
gauge invariance forbids second-order phase transitions to a photon condensate
state when the cavity-photon mode is assumed to be {\it spatially uniform}.
However, it has been theoretically predicted that a collection of three-level
systems coupled to light can display a first-order phase transition to a photon
condensate state. %{It has also been recently shown that truncation of the
Hilbert space of the matter system can affect the gauge invariance of the
theory. However, it is always possible to obtain approximate Hamiltonians
obeying the gauge principle in the truncated Hilbert space.} Here, we
demonstrate a general no-go theorem valid also for truncated, gauge-invariant
models which forbid first-order as well as second-order superradiant phase
transitions in the absence of a coupling with a magnetic field. In particular,
we explicitly consider the cases of interacting electrons in a lattice and
$M$-level systems.
Related papers
- Ground state of the gauge invariant Dicke model: condensation of the photons in non-classical states [0.0]
Two-level systems that arise as a result of truncating the full Hilbert space of atoms to two levels are described by the gauge-invariant Dicke model.
We analyze the observable characteristics of both systems in a wide range of variation of their parameters.
arXiv Detail & Related papers (2024-09-04T13:38:12Z) - Quantum Phase Transitions in Many-Dipole Light-Matter Systems [0.499320937849508]
A potential phase transition between a normal ground state and a photon-condensed ground state in many-dipole light-matter systems is a topic of considerable controversy.
We show that a ferroelectric phase transition can (in principle) still occur and the description of the abnormal phase beyond the critical point requires the inclusion of nonlinear terms in the Holstein-Primakoff mapping.
arXiv Detail & Related papers (2024-05-17T11:38:51Z) - Measurement-Induced Transmon Ionization [69.65384453064829]
We develop a comprehensive framework which provides a physical picture of the origin of transmon ionization.
This framework identifies the multiphoton resonances responsible for transmon ionization.
It also allows one to efficiently compute numerical estimates of the photon number threshold for ionization.
arXiv Detail & Related papers (2024-02-09T18:46:50Z) - First-order photon condensation in magnetic cavities: A two-leg ladder
model [0.0]
We consider a model of free fermions in a ladder geometry coupled to a nonuniform cavity mode via Peierls substitution.
Since the cavity mode generates a magnetic field, no-go theorems on spontaneous photon condensation do not apply.
We observe a phase transition to a photon condensed phase characterized by finite circulating currents.
arXiv Detail & Related papers (2023-02-20T10:55:14Z) - Measurement phase transitions in the no-click limit as quantum phase
transitions of a non-hermitean vacuum [77.34726150561087]
We study phase transitions occurring in the stationary state of the dynamics of integrable many-body non-Hermitian Hamiltonians.
We observe that the entanglement phase transitions occurring in the stationary state have the same nature as that occurring in the vacuum of the non-hermitian Hamiltonian.
arXiv Detail & Related papers (2023-01-18T09:26:02Z) - Geometric phases along quantum trajectories [58.720142291102135]
We study the distribution function of geometric phases in monitored quantum systems.
For the single trajectory exhibiting no quantum jumps, a topological transition in the phase acquired after a cycle.
For the same parameters, the density matrix does not show any interference.
arXiv Detail & Related papers (2023-01-10T22:05:18Z) - Non-Gaussian superradiant transition via three-body ultrastrong coupling [62.997667081978825]
We introduce a class of quantum optical Hamiltonian characterized by three-body couplings.
We propose a circuit-QED scheme based on state-of-the-art technology that implements the considered model.
arXiv Detail & Related papers (2022-04-07T15:39:21Z) - Geometric phase in a dissipative Jaynes-Cummings model: theoretical
explanation for resonance robustness [68.8204255655161]
We compute the geometric phases acquired in both unitary and dissipative Jaynes-Cummings models.
In the dissipative model, the non-unitary effects arise from the outflow of photons through the cavity walls.
We show the geometric phase is robust, exhibiting a vanishing correction under a non-unitary evolution.
arXiv Detail & Related papers (2021-10-27T15:27:54Z) - Observation of a non-Hermitian phase transition in an optical quantum
gas [0.0]
Quantum gases of light, as photons or polariton condensates in optical microcavities, are collective quantum systems.
We experimentally demonstrate a non-Hermitian phase transition of a photon Bose-Einstein condensate to a new dissipative phase.
arXiv Detail & Related papers (2020-10-29T17:59:10Z) - Probing eigenstate thermalization in quantum simulators via
fluctuation-dissipation relations [77.34726150561087]
The eigenstate thermalization hypothesis (ETH) offers a universal mechanism for the approach to equilibrium of closed quantum many-body systems.
Here, we propose a theory-independent route to probe the full ETH in quantum simulators by observing the emergence of fluctuation-dissipation relations.
Our work presents a theory-independent way to characterize thermalization in quantum simulators and paves the way to quantum simulate condensed matter pump-probe experiments.
arXiv Detail & Related papers (2020-07-20T18:00:02Z) - Superradiance, charge density waves and lattice gauge theory in a
generalized Rabi-Hubbard chain [0.0]
We investigate a one-dimensional Rabi-Hubbard type of model arranged such that a qdot is sandwiched between every cavity.
The role of the qdot is to transmit photons between neighboring cavities, while simultaneously acting as a photon non-linearity.
We show that a limit of the model can be interpreted as a $mathbbZ$ lattice gauge theory.
arXiv Detail & Related papers (2020-06-24T10:06:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.