Decoherence-free quantum register of nuclear spins in diamond
- URL: http://arxiv.org/abs/2104.09666v1
- Date: Mon, 19 Apr 2021 22:16:01 GMT
- Title: Decoherence-free quantum register of nuclear spins in diamond
- Authors: Francisco J. Gonz\'alez and Ra\'ul Coto
- Abstract summary: We propose a quantum register that lies in a decoherence-free subspace to be implemented with color centers in diamond.
The quantum information is encoded in two logical states composed of two nearby nuclear spins.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Solid-state quantum registers are exceptional for storing quantum information
at room temperature with long coherence time. Nevertheless, practical
applications toward quantum supremacy require even longer coherence time to
allow for more complex algorithms. In this work we propose a quantum register
that lies in a decoherence-free subspace to be implemented with color centers
in diamond. The quantum information is encoded in two logical states composed
of two nearby nuclear spins, while an electron spin is used as ancilla for
initialization and control. Moreover, by tuning an off-axis magnetic field we
enable non-nuclear-spin-preserving transitions that we use for preparing the
register through Stimulating Raman Adiabatic Passage. Furthermore, we use this
sequence to manipulate the quantum register and an individual nuclear spin.
Related papers
- Many-body quantum register for a spin qubit [31.114245664719455]
We demonstrate a functional quantum register in a semiconductor quantum dot.
Our work establishes how many-body physics can add step-change functionality to quantum devices.
arXiv Detail & Related papers (2024-04-30T16:13:01Z) - Bound state of distant photons in waveguide quantum electrodynamics [137.6408511310322]
Quantum correlations between distant particles remain enigmatic since the birth of quantum mechanics.
We predict a novel kind of bound quantum state in the simplest one-dimensional setup of two interacting particles in a box.
Such states could be realized in the waveguide quantum electrodynamics platform.
arXiv Detail & Related papers (2023-03-17T09:27:02Z) - Quantum process tomography of continuous-variable gates using coherent
states [49.299443295581064]
We demonstrate the use of coherent-state quantum process tomography (csQPT) for a bosonic-mode superconducting circuit.
We show results for this method by characterizing a logical quantum gate constructed using displacement and SNAP operations on an encoded qubit.
arXiv Detail & Related papers (2023-03-02T18:08:08Z) - Preserving Entanglement in a Solid-Spin System Using Quantum
Autoencoders [12.214186598448523]
Entanglement, as a key resource for modern quantum technologies, is extremely fragile due to the decoherence.
We show that a quantum autoencoder, which is trained to compress a particular set of quantum entangled states into a subspace that is robust to decoherence, can be employed to preserve entanglement.
arXiv Detail & Related papers (2022-06-15T15:37:43Z) - Precise control of entanglement in multinuclear spin registers coupled
to defects [0.0]
Quantum networks play an indispensable role in quantum information tasks such as secure communications, enhanced quantum sensing, and distributed computing.
Among the most mature and promising platforms for quantum networking are nitrogen-vacancy centers in diamond and other color centers in solids.
One of the challenges in using these systems for networking applications is to controllably manipulate entanglement between the electron and the nuclear spin register.
arXiv Detail & Related papers (2022-03-17T17:20:54Z) - Efficient Bipartite Entanglement Detection Scheme with a Quantum
Adversarial Solver [89.80359585967642]
Proposal reformulates the bipartite entanglement detection as a two-player zero-sum game completed by parameterized quantum circuits.
We experimentally implement our protocol on a linear optical network and exhibit its effectiveness to accomplish the bipartite entanglement detection for 5-qubit quantum pure states and 2-qubit quantum mixed states.
arXiv Detail & Related papers (2022-03-15T09:46:45Z) - Nuclear spin-wave quantum register for a solid state qubit [3.120672897353664]
coherent quantum systems in nuclear spin-rich hosts enables exploration of a much broader range of materials for quantum information applications.
We develop a robust quantum control protocol to manipulate the multi-level nuclear spin states of neighbouring 51V5+ lattice ions.
Our platform is deterministic and reproducible, ensuring identical quantum registers for all 171Yb qubits.
arXiv Detail & Related papers (2021-08-29T00:27:01Z) - Quantum control of nuclear spin qubits in a rapidly rotating diamond [62.997667081978825]
Nuclear spins in certain solids couple weakly to their environment, making them attractive candidates for quantum information processing and inertial sensing.
We demonstrate optical nuclear spin polarization and rapid quantum control of nuclear spins in a diamond physically rotating at $1,$kHz, faster than the nuclear spin coherence time.
Our work liberates a previously inaccessible degree of freedom of the NV nuclear spin, unlocking new approaches to quantum control and rotation sensing.
arXiv Detail & Related papers (2021-07-27T03:39:36Z) - Information Scrambling in Computationally Complex Quantum Circuits [56.22772134614514]
We experimentally investigate the dynamics of quantum scrambling on a 53-qubit quantum processor.
We show that while operator spreading is captured by an efficient classical model, operator entanglement requires exponentially scaled computational resources to simulate.
arXiv Detail & Related papers (2021-01-21T22:18:49Z) - Universal quantum computation and quantum error correction with
ultracold atomic mixtures [47.187609203210705]
We propose a mixture of two ultracold atomic species as a platform for universal quantum computation with long-range entangling gates.
One atomic species realizes localized collective spins of tunable length, which form the fundamental unit of information.
We discuss a finite-dimensional version of the Gottesman-Kitaev-Preskill code to protect quantum information encoded in the collective spins.
arXiv Detail & Related papers (2020-10-29T20:17:14Z) - Quantum repeaters based on individual electron spins and
nuclear-spin-ensemble memories in quantum dots [0.0]
We propose a quantum repeater scheme that combines individual quantum dot electron spins and nuclear-spin ensembles.
We consider the use of low-strain quantum dots embedded in high-cooperativity optical microcavities.
arXiv Detail & Related papers (2020-10-26T19:31:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.