Many-body quantum register for a spin qubit
- URL: http://arxiv.org/abs/2404.19680v1
- Date: Tue, 30 Apr 2024 16:13:01 GMT
- Title: Many-body quantum register for a spin qubit
- Authors: Martin Hayhurst Appel, Alexander Ghorbal, Noah Shofer, Leon Zaporski, Santanu Manna, Saimon Filipe Covre da Silva, Urs Haeusler, Claire Le Gall, Armando Rastelli, Dorian A. Gangloff, Mete Atatüre,
- Abstract summary: We demonstrate a functional quantum register in a semiconductor quantum dot.
Our work establishes how many-body physics can add step-change functionality to quantum devices.
- Score: 31.114245664719455
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum networks require quantum nodes with coherent optical interfaces and multiple stationary qubits. In terms of optical properties, semiconductor quantum dots are highly compelling, but their adoption as quantum nodes has been impaired by the lack of auxiliary qubits. Here, we demonstrate a functional quantum register in a semiconductor quantum dot leveraging the dense, always-present nuclear spin ensemble. We prepare 13,000 host nuclear spins into a single many-body dark state to operate as the register logic state $|0\rangle$. The logic state $|1\rangle$ is defined as a single nuclear magnon excitation, enabling controlled quantum-state transfer between the electron spin qubit and the nuclear magnonic register. Using 130-ns SWAP gates, we implement a full write-store-retrieve-readout protocol with 68.6(4)% raw overall fidelity and a storage time of 130(16) $\mu$s in the absence of dynamical decoupling. Our work establishes how many-body physics can add step-change functionality to quantum devices, in this case transforming quantum dots into multi-qubit quantum nodes with deterministic registers.
Related papers
- Realizing fracton order from long-range quantum entanglement in programmable Rydberg atom arrays [45.19832622389592]
Storing quantum information requires battling quantum decoherence, which results in a loss of information over time.
To achieve error-resistant quantum memory, one would like to store the information in a quantum superposition of degenerate states engineered in such a way that local sources of noise cannot change one state into another.
We show that this platform also allows to detect and correct certain types of errors en route to the goal of true error-resistant quantum memory.
arXiv Detail & Related papers (2024-07-08T12:46:08Z) - Coherent spin qubit shuttling through germanium quantum dots [0.0]
We show that a spin qubit can be shuttled through multiple quantum dots while preserving its quantum information.
We achieve these results using hole spin qubits in germanium, despite the presence of strong spin-orbit interaction.
arXiv Detail & Related papers (2023-08-04T15:57:25Z) - Quantum Optical Memory for Entanglement Distribution [52.77024349608834]
Entanglement of quantum states over long distances can empower quantum computing, quantum communications, and quantum sensing.
Over the past two decades, quantum optical memories with high fidelity, high efficiencies, long storage times, and promising multiplexing capabilities have been developed.
arXiv Detail & Related papers (2023-04-19T03:18:51Z) - A Quantum Repeater Platform based on Single SiV$^-$ Centers in Diamond
with Cavity-Assisted, All-Optical Spin Access and Fast Coherent Driving [45.82374977939355]
Quantum key distribution enables secure communication based on the principles of quantum mechanics.
Quantum repeaters are required to establish large-scale quantum networks.
We present an efficient spin-photon interface for quantum repeaters.
arXiv Detail & Related papers (2022-10-28T14:33:24Z) - Field-deployable Quantum Memory for Quantum Networking [62.72060057360206]
We present a quantum memory engineered to meet real-world deployment and scaling challenges.
The memory technology utilizes a warm rubidium vapor as the storage medium, and operates at room temperature.
We demonstrate performance specifications of high-fidelity retrieval (95%) and low operation error $(10-2)$ at a storage time of 160 $mu s$ for single-photon level quantum memory operations.
arXiv Detail & Related papers (2022-05-26T00:33:13Z) - Native Conditional $i$SWAP Operation with Superconducting Artificial
Atoms [14.279979630349288]
Coherent devices which process quantum states are required to route the quantum states that encode information.
In this paper we demonstrate experimentally the smallest quantum transistor with a superconducting quantum processor.
The architecture has strong potential in quantum information processing applications with superconducting qubits.
arXiv Detail & Related papers (2022-03-18T08:16:51Z) - Entanglement between a telecom photon and an on-demand multimode
solid-state quantum memory [52.77024349608834]
We show the first demonstration of entanglement between a telecom photon and a collective spin excitation in a multimode solid-state quantum memory.
We extend the entanglement storage in the quantum memory for up to 47.7$mu$s, which could allow for the distribution of entanglement between quantum nodes separated by distances of up to 10 km.
arXiv Detail & Related papers (2021-06-09T13:59:26Z) - Heralded entanglement distribution between two absorptive quantum
memories [7.245400332036547]
Experimental demonstration of heralded entanglement between absorptive quantum memories.
Quantum repeaters based on absorptive quantum memories can overcome limitations.
arXiv Detail & Related papers (2021-01-13T09:17:10Z) - A network-ready random-access qubits memory [0.0]
Photonic qubits memories are essential ingredients of numerous quantum networking protocols.
We demonstrate a random-access multi-qubit write-read memory for photons using two rubidium atoms coupled to the same mode of an optical cavity.
The combined write-read efficiency is 26% and the coherence time approaches 1ms.
arXiv Detail & Related papers (2020-11-02T08:23:01Z) - Adiabatic quantum state transfer in a semiconductor quantum-dot spin
chain [0.0]
We present evidence of adiabatic quantum-state transfer in semiconductor quantum-dot electron spins.
Based on simulations, we estimate that the probability to correctly transfer single-spin eigenstates and two-spin singlet states can exceed 0.95.
arXiv Detail & Related papers (2020-07-08T03:01:27Z) - A Frequency-Multiplexed Coherent Electro-Optic Memory in Rare Earth
Doped Nanoparticles [94.37521840642141]
Quantum memories for light are essential components in quantum technologies like long-distance quantum communication and distributed quantum computing.
Recent studies have shown that long optical and spin coherence lifetimes can be observed in rare earth doped nanoparticles.
We report on coherent light storage in Eu$3+$:Y$$O$_3$ nanoparticles using the Stark Echo Modulation Memory (SEMM) quantum protocol.
arXiv Detail & Related papers (2020-06-17T13:25:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.