論文の概要: CoDR: Computation and Data Reuse Aware CNN Accelerator
- arxiv url: http://arxiv.org/abs/2104.09798v1
- Date: Tue, 20 Apr 2021 07:20:17 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-21 21:57:31.156603
- Title: CoDR: Computation and Data Reuse Aware CNN Accelerator
- Title(参考訳): CoDR: CNNアクセラレータを意識した計算とデータ再利用
- Authors: Alireza Khadem, Haojie Ye, Trevor Mudge
- Abstract要約: 本稿では,畳み込み層において重みのスパース性,反復性,類似性を同時に生かすための普遍的再利用について述べる。
CoDRはアクセスを5.08xと7.99xに減らし、3.76xと6.84xのエネルギーを消費する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Computation and Data Reuse is critical for the resource-limited Convolutional
Neural Network (CNN) accelerators. This paper presents Universal Computation
Reuse to exploit weight sparsity, repetition, and similarity simultaneously in
a convolutional layer. Moreover, CoDR decreases the cost of weight memory
access by proposing a customized Run-Length Encoding scheme and the number of
memory accesses to the intermediate results by introducing an input and output
stationary dataflow. Compared to two recent compressed CNN accelerators with
the same area of 2.85 mm^2, CoDR decreases SRAM access by 5.08x and 7.99x, and
consumes 3.76x and 6.84x less energy.
- Abstract(参考訳): 計算とデータの再利用は、リソース制限畳み込みニューラルネットワーク(cnn)アクセラレータにとって重要である。
本稿では,畳み込み層内での重み付け,繰り返し,類似性を同時に活用するためのユニバーサル計算再利用法を提案する。
さらに、CoDRは、カスタマイズしたRun-Length Encodingスキームを提案し、入力および出力定常データフローを導入して中間結果へのメモリアクセス数を減少させる。
最近の2つの圧縮CNN加速器の面積が2.85mm^2であるのに対し、CoDRはSRAMアクセスを5.08xと7.99xに減らし、エネルギーを3.76xと6.84xに減らした。
関連論文リスト
- SpiDR: A Reconfigurable Digital Compute-in-Memory Spiking Neural Network Accelerator for Event-based Perception [8.968583287058959]
スパイキングニューラルネットワーク(SNN)は、ダイナミックビジョンセンサー(DVS)によって生成された非同期時間データを効率的に処理する方法を提供する。
既存のSNNアクセラレータは、多様なニューロンモデル、ビット精度、ネットワークサイズへの適応性の制限に悩まされている。
本稿では,CIM (Citical Compute-in-Memory) SNNアクセラレーターを,拡張性および再構成性を備えたチップ名として提案する。
論文 参考訳(メタデータ) (2024-11-05T06:59:02Z) - Weight Block Sparsity: Training, Compilation, and AI Engine Accelerators [0.0]
Deep Neural Networks(DNN)が開発、トレーニング、利用され、高度なデバイスと限られたデバイスの両方に負担がかかっている。
私たちのソリューションは、ハードウェアに親しみやすい構造化された空間であるエムの重みブロック間隔を実装することです。
本稿では,Resnet50,Inception V3,VGG16を用いて,AIE2構成セット(AMD Versal FPGA)の正確かつ完全なコード生成による性能評価を行う。
論文 参考訳(メタデータ) (2024-07-12T17:37:49Z) - Dynamic Semantic Compression for CNN Inference in Multi-access Edge
Computing: A Graph Reinforcement Learning-based Autoencoder [82.8833476520429]
部分オフロードにおける効果的な意味抽出と圧縮のための新しい意味圧縮手法であるオートエンコーダベースのCNNアーキテクチャ(AECNN)を提案する。
セマンティックエンコーダでは、CNNのチャネルアテンション機構に基づく特徴圧縮モジュールを導入し、最も情報性の高い特徴を選択して中間データを圧縮する。
セマンティックデコーダでは、受信した圧縮データから学習して中間データを再構築し、精度を向上させる軽量デコーダを設計する。
論文 参考訳(メタデータ) (2024-01-19T15:19:47Z) - Efficient Dataset Distillation Using Random Feature Approximation [109.07737733329019]
本稿では,ニューラルネットワークガウス過程(NNGP)カーネルのランダム特徴近似(RFA)を用いた新しいアルゴリズムを提案する。
我々のアルゴリズムは、KIP上で少なくとも100倍のスピードアップを提供し、1つのGPUで実行できる。
RFA蒸留 (RFAD) と呼ばれる本手法は, 大規模データセットの精度において, KIP や他のデータセット凝縮アルゴリズムと競合して動作する。
論文 参考訳(メタデータ) (2022-10-21T15:56:13Z) - A Low-Complexity Approach to Rate-Distortion Optimized Variable Bit-Rate
Compression for Split DNN Computing [5.3221129103999125]
分散コンピューティングは、DNNベースのAIワークロードを実装するための最近のパラダイムとして登場した。
本稿では,レート・精度・複雑さのトレードオフを最適化する上での課題に対処するアプローチを提案する。
我々のアプローチは、トレーニングと推論の両方において非常に軽量であり、非常に効果的であり、高い速度歪曲性能を実現する。
論文 参考訳(メタデータ) (2022-08-24T15:02:11Z) - DS-Net++: Dynamic Weight Slicing for Efficient Inference in CNNs and
Transformers [105.74546828182834]
本稿では,様々な難易度を持つ入力に対して,ネットワークパラメータの一部を適応的にスライスする動的ウェイトスライシングという,ハードウェア効率のよい動的推論方式を示す。
我々は、CNNのフィルタ数とCNNと変換器の多重次元を入力依存的に調整することで、動的スライム可能なネットワーク(DS-Net)と動的スライス可能なネットワーク(DS-Net++)を提案する。
論文 参考訳(メタデータ) (2021-09-21T09:57:21Z) - CREW: Computation Reuse and Efficient Weight Storage for
Hardware-accelerated MLPs and RNNs [1.0635248457021496]
本稿では,ReuseとEfficient Weight Storage機構を実装したハードウェアアクセラレータCREWを紹介する。
CREWは乗算数を大幅に削減し、モデルメモリフットプリントとメモリ帯域幅使用量を大幅に削減する。
CREWは平均2.61倍のスピードアップと2.42倍の省エネを提供する。
論文 参考訳(メタデータ) (2021-07-20T11:10:54Z) - FastFlowNet: A Lightweight Network for Fast Optical Flow Estimation [81.76975488010213]
ディセンス光学フロー推定は、多くのロボットビジョンタスクで重要な役割を果たしています。
現在のネットワークはしばしば多くのパラメータを占有し、計算コストがかかる。
提案したFastFlowNetは、周知の粗大なやり方で、以下のイノベーションで機能する。
論文 参考訳(メタデータ) (2021-03-08T03:09:37Z) - SmartDeal: Re-Modeling Deep Network Weights for Efficient Inference and
Training [82.35376405568975]
ディープニューラルネットワーク(DNN)は重いパラメータ化を伴い、ストレージ用の外部動的ランダムアクセスメモリ(DRAM)につながります。
We present SmartDeal (SD), a algorithm framework to trade high-cost memory storage/ access for lower-cost compute。
SDは貯蔵および訓練エネルギーの10.56xそして4.48x減少、最先端の訓練のベースラインと比較される無視可能な正確さの損失をもたらすことを示します。
論文 参考訳(メタデータ) (2021-01-04T18:54:07Z) - RNNAccel: A Fusion Recurrent Neural Network Accelerator for Edge
Intelligence [2.055204980188575]
我々は、RNNAccelと呼ばれるRNNディープラーニングアクセラレータを提示する。
LSTM(Long Short-Term Memory)ネットワーク、GRU(Gated Recurrent Unit)ネットワーク、FC(Fully Connected Layer)/MLP(Multiple-Perceptron Layer)ネットワークをサポートする。
32-MAC RNNアクセラレータは90%のMAC利用、40nmプロセスで1.27TOP/W、圧縮比8倍、推測精度90%を達成する。
論文 参考訳(メタデータ) (2020-10-26T03:36:36Z) - SmartExchange: Trading Higher-cost Memory Storage/Access for Lower-cost
Computation [97.78417228445883]
We present SmartExchange, a algorithm- hardware co-design framework for energy- efficient inference of Deep Neural Network (DNNs)。
そこで我々は,非零要素がすべてパワー・オブ・ツーである小さな基底行列と大きなスパース係数行列の積として,各重み行列を格納できる,特別に好ましいDNN重み構造を強制する新しいアルゴリズムを開発した。
さらに、SmartExchange強化重量をフル活用し、エネルギー効率と遅延性能の両方を改善するための専用のアクセラレータを設計する。
論文 参考訳(メタデータ) (2020-05-07T12:12:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。