論文の概要: SpiDR: A Reconfigurable Digital Compute-in-Memory Spiking Neural Network Accelerator for Event-based Perception
- arxiv url: http://arxiv.org/abs/2411.02854v1
- Date: Tue, 05 Nov 2024 06:59:02 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-06 14:58:28.743825
- Title: SpiDR: A Reconfigurable Digital Compute-in-Memory Spiking Neural Network Accelerator for Event-based Perception
- Title(参考訳): SpiDR: イベントベースの知覚のための再構成可能なデジタルコンピュートインメモリスパイクニューラルネットワーク加速器
- Authors: Deepika Sharma, Shubham Negi, Trishit Dutta, Amogh Agrawal, Kaushik Roy,
- Abstract要約: スパイキングニューラルネットワーク(SNN)は、ダイナミックビジョンセンサー(DVS)によって生成された非同期時間データを効率的に処理する方法を提供する。
既存のSNNアクセラレータは、多様なニューロンモデル、ビット精度、ネットワークサイズへの適応性の制限に悩まされている。
本稿では,CIM (Citical Compute-in-Memory) SNNアクセラレーターを,拡張性および再構成性を備えたチップ名として提案する。
- 参考スコア(独自算出の注目度): 8.968583287058959
- License:
- Abstract: Spiking Neural Networks (SNNs), with their inherent recurrence, offer an efficient method for processing the asynchronous temporal data generated by Dynamic Vision Sensors (DVS), making them well-suited for event-based vision applications. However, existing SNN accelerators suffer from limitations in adaptability to diverse neuron models, bit precisions and network sizes, inefficient membrane potential (Vmem) handling, and limited sparse optimizations. In response to these challenges, we propose a scalable and reconfigurable digital compute-in-memory (CIM) SNN accelerator \chipname with a set of key features: 1) It uses in-memory computations and reconfigurable operating modes to minimize data movement associated with weight and Vmem data structures while efficiently adapting to different workloads. 2) It supports multiple weight/Vmem bit precision values, enabling a trade-off between accuracy and energy efficiency and enhancing adaptability to diverse application demands. 3) A zero-skipping mechanism for sparse inputs significantly reduces energy usage by leveraging the inherent sparsity of spikes without introducing high overheads for low sparsity. 4) Finally, the asynchronous handshaking mechanism maintains the computational efficiency of the pipeline for variable execution times of different computation units. We fabricated \chipname in 65 nm Taiwan Semiconductor Manufacturing Company (TSMC) low-power (LP) technology. It demonstrates competitive performance (scaled to the same technology node) to other digital SNN accelerators proposed in the recent literature and supports advanced reconfigurability. It achieves up to 5 TOPS/W energy efficiency at 95% input sparsity with 4-bit weights and 7-bit Vmem precision.
- Abstract(参考訳): Spiking Neural Networks (SNN)は、その固有の再帰とともに、Dynamic Vision Sensors (DVS)によって生成された非同期時間データを効率的に処理する方法を提供し、イベントベースの視覚アプリケーションに適している。
しかし、既存のSNNアクセラレータは、多様なニューロンモデルへの適応性の制限、ビット精度とネットワークサイズ、非効率な膜電位(Vmem)処理、スパース最適化に悩まされている。
これらの課題に対応するため、我々は、CIM(Citical Compute-in-Memory) SNNアクセラレーター \chipname を拡張可能で再構成可能とする。
1) メモリ内計算と再設定可能な操作モードを使用して、異なるワークロードに効率よく適応しながら、重みとVmemデータ構造に関連するデータ移動を最小限に抑える。
2)複数の重み/Vmemビット精度値をサポートし、精度とエネルギー効率のトレードオフを可能にし、多様なアプリケーション要求への適応性を向上させる。
3) スパース入力のゼロスキッピング機構は, スパイクの固有な空間性を活用することで, 低空間性のために高いオーバーヘッドを発生させることなく, エネルギー消費を著しく低減する。
4)最後に、非同期ハンドシェイキング機構は、異なる計算単位の可変実行時間に対するパイプラインの計算効率を維持する。
我々は、65nmの台湾半導体製造会社(TSMC)の低消費電力(LP)技術で「チップネーム」を作製した。
これは最近の文献で提案されている他のデジタルSNNアクセラレータとの競合性能(同じ技術ノードにスケール)を示し、高度な再構成性をサポートする。
最大5TOPS/Wエネルギー効率を95%の入力間隔で達成し、4ビットの重みと7ビットのVmem精度を持つ。
関連論文リスト
- TSB: Tiny Shared Block for Efficient DNN Deployment on NVCIM Accelerators [11.496631244103773]
Tiny Shared Block (TSB)"は、小さな共有1x1畳み込みブロックをDeep Neural Networkアーキテクチャに統合する。
TSBは、20倍以上の推論精度ギャップの改善、5倍以上のトレーニングスピードアップ、デバイス間マッピングコストの削減を実現している。
論文 参考訳(メタデータ) (2024-05-08T20:53:38Z) - Full-Stack Optimization for CAM-Only DNN Inference [2.0837295518447934]
本稿では,3次重み付けニューラルネットワークと連想プロセッサのアルゴリズム最適化の組み合わせについて検討する。
演算強度を低減し,APの畳み込みを最適化する新しいコンパイルフローを提案する。
本研究では,イメージネット上でのResNet-18推論のエネルギー効率を,クロスバーメモリアクセラレータと比較して7.5倍向上させる。
論文 参考訳(メタデータ) (2024-01-23T10:27:38Z) - EPIM: Efficient Processing-In-Memory Accelerators based on Epitome [78.79382890789607]
畳み込みのような機能を提供する軽量神経オペレータであるEpitomeを紹介する。
ソフトウェア側では,PIMアクセラレータ上でのエピトームのレイテンシとエネルギを評価する。
ハードウェア効率を向上させるため,PIM対応層設計手法を提案する。
論文 参考訳(メタデータ) (2023-11-12T17:56:39Z) - The Hardware Impact of Quantization and Pruning for Weights in Spiking
Neural Networks [0.368986335765876]
パラメータの量子化とプルーニングは、モデルサイズを圧縮し、メモリフットプリントを削減し、低レイテンシ実行を容易にする。
本研究では,身近な身近なジェスチャー認識システムであるSNNに対して,孤立度,累積的に,そして同時にプルーニングと量子化の様々な組み合わせについて検討する。
本研究では,3次重みまで精度の低下に悩まされることなく,攻撃的パラメータ量子化に対処可能であることを示す。
論文 参考訳(メタデータ) (2023-02-08T16:25:20Z) - Energy Efficient Hardware Acceleration of Neural Networks with
Power-of-Two Quantisation [0.0]
我々は、Zynq UltraScale + MPSoC ZCU104 FPGA上に実装されたPoT重みを持つハードウェアニューラルネットワークアクセラレーターが、均一量子化バージョンよりも少なくとも1.4x$のエネルギー効率を持つことを示す。
論文 参考訳(メタデータ) (2022-09-30T06:33:40Z) - FPGA-optimized Hardware acceleration for Spiking Neural Networks [69.49429223251178]
本研究は,画像認識タスクに適用したオフライントレーニングによるSNN用ハードウェアアクセラレータの開発について述べる。
この設計はXilinx Artix-7 FPGAをターゲットにしており、利用可能なハードウェアリソースの40%を合計で使用している。
分類時間を3桁に短縮し、ソフトウェアと比較すると精度にわずか4.5%の影響を与えている。
論文 参考訳(メタデータ) (2022-01-18T13:59:22Z) - DS-Net++: Dynamic Weight Slicing for Efficient Inference in CNNs and
Transformers [105.74546828182834]
本稿では,様々な難易度を持つ入力に対して,ネットワークパラメータの一部を適応的にスライスする動的ウェイトスライシングという,ハードウェア効率のよい動的推論方式を示す。
我々は、CNNのフィルタ数とCNNと変換器の多重次元を入力依存的に調整することで、動的スライム可能なネットワーク(DS-Net)と動的スライス可能なネットワーク(DS-Net++)を提案する。
論文 参考訳(メタデータ) (2021-09-21T09:57:21Z) - Dynamic Slimmable Network [105.74546828182834]
ダイナミックスリム化システム「ダイナミックスリム化ネットワーク(DS-Net)」を開発。
ds-netは,提案するダブルヘッド動的ゲートによる動的推論機能を備えている。
静的圧縮法と最先端の静的および動的モデル圧縮法を一貫して上回っている。
論文 参考訳(メタデータ) (2021-03-24T15:25:20Z) - SmartDeal: Re-Modeling Deep Network Weights for Efficient Inference and
Training [82.35376405568975]
ディープニューラルネットワーク(DNN)は重いパラメータ化を伴い、ストレージ用の外部動的ランダムアクセスメモリ(DRAM)につながります。
We present SmartDeal (SD), a algorithm framework to trade high-cost memory storage/ access for lower-cost compute。
SDは貯蔵および訓練エネルギーの10.56xそして4.48x減少、最先端の訓練のベースラインと比較される無視可能な正確さの損失をもたらすことを示します。
論文 参考訳(メタデータ) (2021-01-04T18:54:07Z) - EdgeBERT: Sentence-Level Energy Optimizations for Latency-Aware
Multi-Task NLP Inference [82.1584439276834]
BERTのようなトランスフォーマーベースの言語モデルでは、自然言語処理(NLP)タスクの精度が大幅に向上する。
We present EdgeBERT, a in-deepth algorithm- hardware co-design for latency-aware energy optimization for multi-task NLP。
論文 参考訳(メタデータ) (2020-11-28T19:21:47Z) - FSpiNN: An Optimization Framework for Memory- and Energy-Efficient
Spiking Neural Networks [14.916996986290902]
スパイキングニューラルネットワーク(SNN)は、スパイクタイピング依存の可塑性(STDP)ルールのために教師なし学習機能を提供する。
しかし、最先端のSNNは高い精度を達成するために大きなメモリフットプリントを必要とする。
トレーニングおよび推論処理のためのメモリ効率とエネルギー効率のよいSNNを得るための最適化フレームワークFSpiNNを提案する。
論文 参考訳(メタデータ) (2020-07-17T09:40:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。