論文の概要: Deep learning with transfer functions: new applications in system
identification
- arxiv url: http://arxiv.org/abs/2104.09839v1
- Date: Tue, 20 Apr 2021 08:58:55 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-21 13:52:44.064249
- Title: Deep learning with transfer functions: new applications in system
identification
- Title(参考訳): 伝達関数を用いたディープラーニング:システム同定の新しい応用
- Authors: Dario Piga, Marco Forgione, Manas Mejari
- Abstract要約: 本稿では,自動微分計算のためのよく定義された効率的なバックプロパゲーション挙動を付与した線形動的作用素を提案する。
このオペレータは、線形転送関数と他の微分可能なユニットを含む構造化ネットワークのエンドツーエンドトレーニングを可能にする。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper presents a linear dynamical operator described in terms of a
rational transfer function, endowed with a well-defined and efficient
back-propagation behavior for automatic derivatives computation. The operator
enables end-to-end training of structured networks containing linear transfer
functions and other differentiable units {by} exploiting standard deep learning
software.
Two relevant applications of the operator in system identification are
presented. The first one consists in the integration of {prediction error
methods} in deep learning. The dynamical operator is included as {the} last
layer of a neural network in order to obtain the optimal one-step-ahead
prediction error.
The second one considers identification of general block-oriented models from
quantized data. These block-oriented models are constructed by combining linear
dynamical operators with static nonlinearities described as standard
feed-forward neural networks. A custom loss function corresponding to the
log-likelihood of quantized output observations is defined. For gradient-based
optimization, the derivatives of the log-likelihood are computed by applying
the back-propagation algorithm through the whole network. Two system
identification benchmarks are used to show the effectiveness of the proposed
methodologies.
- Abstract(参考訳): 本稿では, 有理伝達関数を用いて記述した線形動的作用素について, 自動微分計算によく定義され, 効率的なバックプロパゲーション挙動を付与する。
このオペレータは、標準的なディープラーニングソフトウェアを活用する線形転送関数やその他の微分可能なユニット {by} を含む構造化ネットワークのエンドツーエンドトレーニングを可能にする。
システム識別における演算子の2つの応用について述べる。
1つ目は、深層学習における {prediction error method} の統合である。
動的演算子は、最適なワンステップアヘッド予測誤差を得るために、ニューラルネットワークの最後の層として含まれる。
2つめは、量子化データから一般的なブロック指向モデルの同定を考えることである。
これらのブロック指向モデルは、線形力学演算子と標準フィードフォワードニューラルネットワークとして記述される静的非線形性を組み合わせることで構成される。
量子化された出力観測のログ類似度に対応するカスタム損失関数を定義する。
勾配に基づく最適化では、バックプロパゲーションアルゴリズムをネットワーク全体に適用することにより、ログ様相の導出を計算できる。
2つのシステム識別ベンチマークを用いて提案手法の有効性を示す。
関連論文リスト
- DeltaPhi: Learning Physical Trajectory Residual for PDE Solving [54.13671100638092]
我々は,物理軌道残差学習(DeltaPhi)を提案し,定式化する。
既存のニューラル演算子ネットワークに基づく残差演算子マッピングのサロゲートモデルについて学習する。
直接学習と比較して,PDEの解法には物理残差学習が望ましいと結論づける。
論文 参考訳(メタデータ) (2024-06-14T07:45:07Z) - Linearization Turns Neural Operators into Function-Valued Gaussian Processes [23.85470417458593]
ニューラル作用素におけるベイズの不確かさを近似する新しい枠組みを導入する。
我々の手法は関数型プログラミングからカリー化の概念の確率論的類似体と解釈できる。
我々は、異なるタイプの偏微分方程式への応用を通して、我々のアプローチの有効性を示す。
論文 参考訳(メタデータ) (2024-06-07T16:43:54Z) - A Recursively Recurrent Neural Network (R2N2) Architecture for Learning
Iterative Algorithms [64.3064050603721]
本研究では,リカレントニューラルネットワーク (R2N2) にランゲ・クッタニューラルネットワークを一般化し,リカレントニューラルネットワークを最適化した反復アルゴリズムの設計を行う。
本稿では, 線形方程式系に対するクリロフ解法, 非線形方程式系に対するニュートン・クリロフ解法, 常微分方程式に対するルンゲ・クッタ解法と類似の繰り返しを計算問題クラスの入力・出力データに対して提案した超構造内における重みパラメータの正規化について述べる。
論文 参考訳(メタデータ) (2022-11-22T16:30:33Z) - Lifted Bregman Training of Neural Networks [28.03724379169264]
本稿では,(潜在的に非滑らかな)近位写像を活性化関数として,フィードフォワードニューラルネットワークのトレーニングのための新しい数学的定式化を導入する。
この定式化はBregmanに基づいており、ネットワークのパラメータに関する偏微分がネットワークのアクティベーション関数の微分の計算を必要としないという利点がある。
ニューラルネットワークに基づく分類器のトレーニングや、スパースコーディングによる(デノーミング)オートエンコーダのトレーニングには、これらのトレーニングアプローチが等しく適しているか、さらに適していることを示す数値的な結果がいくつか提示される。
論文 参考訳(メタデータ) (2022-08-18T11:12:52Z) - Consensus Function from an $L_p^q-$norm Regularization Term for its Use
as Adaptive Activation Functions in Neural Networks [0.0]
本稿では,学習過程においてその形状に適応する暗黙的,パラメトリックな非線形活性化関数の定義と利用を提案する。
この事実は、ネットワーク内で最適化するパラメータの空間を増大させるが、柔軟性を高め、ニューラルネットワークの概念を一般化する。
予備的な結果は、この種の適応的アクティベーション関数によるニューラルネットワークの使用は、回帰や分類の例における誤差を減少させることを示している。
論文 参考訳(メタデータ) (2022-06-30T04:48:14Z) - Connecting Weighted Automata, Tensor Networks and Recurrent Neural
Networks through Spectral Learning [58.14930566993063]
我々は、形式言語と言語学からの重み付き有限オートマトン(WFA)、機械学習で使用されるリカレントニューラルネットワーク、テンソルネットワークの3つのモデル間の接続を提示する。
本稿では,連続ベクトル入力の列上に定義された線形2-RNNに対する最初の証明可能な学習アルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-10-19T15:28:00Z) - Relaxing the Constraints on Predictive Coding Models [62.997667081978825]
予測符号化(英: Predictive coding)は、脳が行う主計算が予測誤差の最小化であるとする皮質機能の影響力のある理論である。
アルゴリズムの標準的な実装は、同じ前方と後方の重み、後方の非線形微分、1-1エラーユニット接続といった、潜在的に神経的に予測できない特徴を含んでいる。
本稿では,これらの特徴はアルゴリズムに不可欠なものではなく,Hebbianの更新ルールを用いてパラメータセットを直接あるいは学習することで,学習性能に悪影響を及ぼすことなく除去可能であることを示す。
論文 参考訳(メタデータ) (2020-10-02T15:21:37Z) - Activation Relaxation: A Local Dynamical Approximation to
Backpropagation in the Brain [62.997667081978825]
活性化緩和(AR)は、バックプロパゲーション勾配を力学系の平衡点として構成することで動機付けられる。
我々のアルゴリズムは、正しいバックプロパゲーション勾配に迅速かつ堅牢に収束し、単一のタイプの計算単位しか必要とせず、任意の計算グラフで操作できる。
論文 参考訳(メタデータ) (2020-09-11T11:56:34Z) - Provably Efficient Neural Estimation of Structural Equation Model: An
Adversarial Approach [144.21892195917758]
一般化構造方程式モデル(SEM)のクラスにおける推定について検討する。
線形作用素方程式をmin-maxゲームとして定式化し、ニューラルネットワーク(NN)でパラメータ化し、勾配勾配を用いてニューラルネットワークのパラメータを学習する。
提案手法は,サンプル分割を必要とせず,確固とした収束性を持つNNをベースとしたSEMの抽出可能な推定手順を初めて提供する。
論文 参考訳(メタデータ) (2020-07-02T17:55:47Z) - dynoNet: a neural network architecture for learning dynamical systems [0.0]
本稿では, 線形動的演算子を基本構造として利用したネットワークアーキテクチャ, dynoNetを提案する。
そのパラメータと入力シーケンスの両方に関して線形力学演算子のバックプロパゲーション挙動が定義される。
論文 参考訳(メタデータ) (2020-06-03T13:10:02Z) - Implicit Bias of Gradient Descent for Wide Two-layer Neural Networks
Trained with the Logistic Loss [0.0]
勾配に基づく手法によるロジスティック(クロスエントロピー)損失を最小限に抑えるために訓練されたニューラルネットワークは、多くの教師付き分類タスクでうまく機能する。
我々は、均一な活性化を伴う無限に広い2層ニューラルネットワークのトレーニングと一般化の挙動を解析する。
論文 参考訳(メタデータ) (2020-02-11T15:42:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。