論文の概要: Forecasting The JSE Top 40 Using Long Short-Term Memory Networks
- arxiv url: http://arxiv.org/abs/2104.09855v1
- Date: Tue, 20 Apr 2021 09:39:38 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-21 21:19:33.484050
- Title: Forecasting The JSE Top 40 Using Long Short-Term Memory Networks
- Title(参考訳): 長期記憶ネットワークを用いたJSEトップ40の予測
- Authors: Adam Balusik, Jared de Magalhaes and Rendani Mbuvha
- Abstract要約: 本稿では、長期記憶ネットワークを用いて、JSEトップ40インデックスのリターンデータに基づいて財務時系列予測を行う。
本稿では,長期記憶ネットワークが季節的自己回帰統合移動平均モデルより優れていることを結論する。
- 参考スコア(独自算出の注目度): 1.6114012813668934
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: As a result of the greater availability of big data, as well as the
decreasing costs and increasing power of modern computing, the use of
artificial neural networks for financial time series forecasting is once again
a major topic of discussion and research in the financial world. Despite this
academic focus, there are still contrasting opinions and bodies of literature
on which artificial neural networks perform the best and whether or not they
outperform the forecasting capabilities of conventional time series models.
This paper uses a long-short term memory network to perform financial time
series forecasting on the return data of the JSE Top 40 index. Furthermore, the
forecasting performance of the long-short term memory network is compared to
the forecasting performance of a seasonal autoregressive integrated moving
average model. This paper evaluates the varying approaches presented in the
existing literature and ultimately, compares the results to that existing
literature. The paper concludes that the long short-term memory network
outperforms the seasonal autoregressive integrated moving average model when
forecasting intraday directional movements as well as when forecasting the
index close price.
- Abstract(参考訳): ビッグデータの高可用性とコストの低減と現代のコンピューティングのパワーの増大により、金融時系列予測における人工ニューラルネットワークの利用は、金融業界における議論と研究の主要なトピックとなった。
このような学術的な注目にもかかわらず、ニューラルネットワークが最高の性能を発揮し、従来の時系列モデルの予測能力を上回るかどうかについて、いまだに対照的な意見や文献がある。
本稿では、長期記憶ネットワークを用いて、JSEトップ40インデックスのリターンデータに基づいて財務時系列予測を行う。
さらに,長期記憶ネットワークの予測性能を,季節的自己回帰統合移動平均モデルの予測性能と比較した。
本稿では,既存の文献に提示される様々なアプローチを評価し,その結果を既存の文献と比較する。
本研究は,長期記憶ネットワークが日内方向の予測や指数クローズド価格の予測において,季節自己回帰統合移動平均モデルより優れていることを結論する。
関連論文リスト
- Stock Price Prediction and Traditional Models: An Approach to Achieve Short-, Medium- and Long-Term Goals [0.0]
在庫価格予測のためのディープラーニングモデルと従来の統計手法の比較分析は、ナイジェリア証券取引所のデータを用いている。
深層学習モデル、特にLSTMは、データの複雑な非線形パターンをキャプチャすることで従来の手法より優れている。
この結果は、金融予測と投資戦略を改善するための深層学習の可能性を強調している。
論文 参考訳(メタデータ) (2024-09-29T11:20:20Z) - Loss Shaping Constraints for Long-Term Time Series Forecasting [79.3533114027664]
本稿では,長期時系列予測のための制約付き学習手法を提案する。
提案手法は, 予測ウィンドウ上でエラーを発生させながら, 時系列ベンチマークにおける競合平均性能を示すことを示すための, 実用的なプリマル・デュアルアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-02-14T18:20:44Z) - Financial Time-Series Forecasting: Towards Synergizing Performance And
Interpretability Within a Hybrid Machine Learning Approach [2.0213537170294793]
本稿では、ハイブリッド機械学習アルゴリズムの比較研究を行い、モデル解釈可能性の向上に活用する。
本稿では,金融時系列予測において出現する潜伏関係や複雑なパターンの発掘を目的とした,分解,自己相関関数,指数的三重予測など,時系列統計の事前処理技術に関する体系的な概要を述べる。
論文 参考訳(メタデータ) (2023-12-31T16:38:32Z) - Long Short-Term Memory Neural Network for Financial Time Series [0.0]
株価変動の予測のために,単体および並列長短期記憶ニューラルネットワークのアンサンブルを提案する。
ストレートなトレーディング戦略では、ランダムに選択されたポートフォリオと指数のすべての株を含むポートフォリオを比較すると、LSTMアンサンブルから得られたポートフォリオが平均的なリターンと時間とともに高い累積リターンを提供することを示している。
論文 参考訳(メタデータ) (2022-01-20T15:17:26Z) - Multi-head Temporal Attention-Augmented Bilinear Network for Financial
time series prediction [77.57991021445959]
本稿では,時間的注意と多面的注意の考え方に基づいて,ニューラルネットワークの能力を拡張するニューラルネットワーク層を提案する。
本手法の有効性を,大規模書籍市場データを用いて検証した。
論文 参考訳(メタデータ) (2022-01-14T14:02:19Z) - Bilinear Input Normalization for Neural Networks in Financial
Forecasting [101.89872650510074]
本稿では,高頻度金融時系列を扱うディープニューラルネットワークのための新しいデータ駆動正規化手法を提案する。
提案手法は,財務時系列のバイモーダル特性を考慮したものである。
我々の実験は最先端のニューラルネットワークと高周波データを用いて行われ、他の正規化技術よりも大幅に改善された。
論文 参考訳(メタデータ) (2021-09-01T07:52:03Z) - Low-Rank Temporal Attention-Augmented Bilinear Network for financial
time-series forecasting [93.73198973454944]
ディープラーニングモデルは、金融時系列データの予測問題など、さまざまな領域から来る多くの問題において、大幅なパフォーマンス改善をもたらしている。
近年,制限順序書の時系列予測の効率的かつ高性能なモデルとして,時間的注意強化バイリニアネットワークが提案されている。
本稿では,モデルの低ランクテンソル近似を提案し,トレーニング可能なパラメータの数をさらに削減し,その速度を向上する。
論文 参考訳(メタデータ) (2021-07-05T10:15:23Z) - Back2Future: Leveraging Backfill Dynamics for Improving Real-time
Predictions in Future [73.03458424369657]
公衆衛生におけるリアルタイム予測では、データ収集は簡単で要求の多いタスクである。
過去の文献では「バックフィル」現象とそのモデル性能への影響についてはほとんど研究されていない。
我々は、与えられたモデルの予測をリアルタイムで洗練することを目的とした、新しい問題とニューラルネットワークフレームワークBack2Futureを定式化する。
論文 参考訳(メタデータ) (2021-06-08T14:48:20Z) - Predicting Inflation with Recurrent Neural Networks [0.0]
本稿では,リカレントニューラルネットワークLSTMを用いてインフレーションの予測を行う。
米国のデータによるエクササイズの結果は、推定されたニューラルネットが、一般的なベンチマークに対して競合するが、傑出したものではないことを示している。
論文 参考訳(メタデータ) (2021-04-08T13:19:26Z) - A Stochastic Time Series Model for Predicting Financial Trends using NLP [4.081440927534578]
近年のディープニューラルネットワーク技術の進歩により、研究者は金融トレンドを予測するための高精度なモデルを開発することができる。
本稿では,ST-GAN (Time-Series Generative Adversarial Network) と呼ばれる新しいディープラーニングモデルを提案する。
我々は、GAN(Generative Adversarial Network)のような最先端技術を用いて、テキストデータと数値データの相関関係を時間とともに学習する。
論文 参考訳(メタデータ) (2021-02-02T04:03:01Z) - Deep Stock Predictions [58.720142291102135]
本稿では,Long Short Term Memory (LSTM) ニューラルネットワークを用いてポートフォリオ最適化を行うトレーディング戦略の設計について考察する。
次に、LSTMのトレーニングに使用する損失関数をカスタマイズし、利益を上げる。
カスタマイズされた損失関数を持つLSTMモデルは、ARIMAのような回帰ベースライン上でのトレーニングボットの性能を向上させる。
論文 参考訳(メタデータ) (2020-06-08T23:37:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。