Active and sparse methods in smoothed model checking
- URL: http://arxiv.org/abs/2104.09940v1
- Date: Tue, 20 Apr 2021 13:03:25 GMT
- Title: Active and sparse methods in smoothed model checking
- Authors: Paul Piho, Jane Hillston
- Abstract summary: We consider extensions to smoothed model checking based on sparse variational methods and active learning.
Online extensions of sparse variational Gaussian process inference algorithms are demonstrated to provide a scalable method for implementing active learning approaches for smoothed model checking.
- Score: 2.28438857884398
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Smoothed model checking based on Gaussian process classification provides a
powerful approach for statistical model checking of parametric continuous time
Markov chain models. The method constructs a model for the functional
dependence of satisfaction probability on the Markov chain parameters. This is
done via Gaussian process inference methods from a limited number of
observations for different parameter combinations. In this work we consider
extensions to smoothed model checking based on sparse variational methods and
active learning. Both are used successfully to improve the scalability of
smoothed model checking. In particular, we see that active learning-based ideas
for iteratively querying the simulation model for observations can be used to
steer the model-checking to more informative areas of the parameter space and
thus improve sample efficiency. Online extensions of sparse variational
Gaussian process inference algorithms are demonstrated to provide a scalable
method for implementing active learning approaches for smoothed model checking.
Related papers
- Supervised Score-Based Modeling by Gradient Boosting [49.556736252628745]
We propose a Supervised Score-based Model (SSM) which can be viewed as a gradient boosting algorithm combining score matching.
We provide a theoretical analysis of learning and sampling for SSM to balance inference time and prediction accuracy.
Our model outperforms existing models in both accuracy and inference time.
arXiv Detail & Related papers (2024-11-02T07:06:53Z) - Towards Learning Stochastic Population Models by Gradient Descent [0.0]
We show that simultaneous estimation of parameters and structure poses major challenges for optimization procedures.
We demonstrate accurate estimation of models but find that enforcing the inference of parsimonious, interpretable models drastically increases the difficulty.
arXiv Detail & Related papers (2024-04-10T14:38:58Z) - Online Variational Sequential Monte Carlo [49.97673761305336]
We build upon the variational sequential Monte Carlo (VSMC) method, which provides computationally efficient and accurate model parameter estimation and Bayesian latent-state inference.
Online VSMC is capable of performing efficiently, entirely on-the-fly, both parameter estimation and particle proposal adaptation.
arXiv Detail & Related papers (2023-12-19T21:45:38Z) - Learning minimal representations of stochastic processes with
variational autoencoders [52.99137594502433]
We introduce an unsupervised machine learning approach to determine the minimal set of parameters required to describe a process.
Our approach enables for the autonomous discovery of unknown parameters describing processes.
arXiv Detail & Related papers (2023-07-21T14:25:06Z) - Community Detection in the Stochastic Block Model by Mixed Integer
Programming [3.8073142980733]
Degree-Corrected Block Model (DCSBM) is a popular model to generate random graphs with community structure given an expected degree sequence.
Standard approach of community detection based on the DCSBM is to search for the model parameters that are the most likely to have produced the observed network data through maximum likelihood estimation (MLE)
We present mathematical programming formulations and exact solution methods that can provably find the model parameters and community assignments of maximum likelihood given an observed graph.
arXiv Detail & Related papers (2021-01-26T22:04:40Z) - Gaussian Process Models with Low-Rank Correlation Matrices for Both
Continuous and Categorical Inputs [0.0]
We introduce a method that uses low-rank approximations of cross-correlation matrices in mixed continuous and categorical Gaussian Process models.
Low-Rank Correlation (LRC) offers the ability to flexibly adapt the number of parameters to the problem at hand by choosing an appropriate rank of the approximation.
arXiv Detail & Related papers (2020-10-06T09:38:35Z) - Control as Hybrid Inference [62.997667081978825]
We present an implementation of CHI which naturally mediates the balance between iterative and amortised inference.
We verify the scalability of our algorithm on a continuous control benchmark, demonstrating that it outperforms strong model-free and model-based baselines.
arXiv Detail & Related papers (2020-07-11T19:44:09Z) - Evaluating the Disentanglement of Deep Generative Models through
Manifold Topology [66.06153115971732]
We present a method for quantifying disentanglement that only uses the generative model.
We empirically evaluate several state-of-the-art models across multiple datasets.
arXiv Detail & Related papers (2020-06-05T20:54:11Z) - Model-Augmented Actor-Critic: Backpropagating through Paths [81.86992776864729]
Current model-based reinforcement learning approaches use the model simply as a learned black-box simulator.
We show how to make more effective use of the model by exploiting its differentiability.
arXiv Detail & Related papers (2020-05-16T19:18:10Z) - Amortized Bayesian model comparison with evidential deep learning [0.12314765641075436]
We propose a novel method for performing Bayesian model comparison using specialized deep learning architectures.
Our method is purely simulation-based and circumvents the step of explicitly fitting all alternative models under consideration to each observed dataset.
We show that our method achieves excellent results in terms of accuracy, calibration, and efficiency across the examples considered in this work.
arXiv Detail & Related papers (2020-04-22T15:15:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.