論文の概要: Prospective Artificial Intelligence Approaches for Active Cyber Defence
- arxiv url: http://arxiv.org/abs/2104.09981v1
- Date: Tue, 20 Apr 2021 14:07:34 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-21 18:10:56.605701
- Title: Prospective Artificial Intelligence Approaches for Active Cyber Defence
- Title(参考訳): アクティブサイバー防衛への人工知能の展望
- Authors: Neil Dhir, Henrique Hoeltgebaum, Niall Adams, Mark Briers, Anthony
Burke, Paul Jones
- Abstract要約: 一部のサイバーセキュリティ専門家は、AIが対応するサイバー防衛対策の新たなクラスを可能にすると推測している。
このポジショニングペーパーは、最も有望なAIアプローチの2つのロードマップを更新する。
バランスを守備隊に戻すのに役立てる理由を説明している。
- 参考スコア(独自算出の注目度): 1.443536831322927
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Cybercriminals are rapidly developing new malicious tools that leverage
artificial intelligence (AI) to enable new classes of adaptive and stealthy
attacks. New defensive methods need to be developed to counter these threats.
Some cybersecurity professionals are speculating AI will enable corresponding
new classes of active cyber defence measures -- is this realistic, or currently
mostly hype? The Alan Turing Institute, with expert guidance from the UK
National Cyber Security Centre and Defence Science Technology Laboratory,
published a research roadmap for AI for ACD last year. This position paper
updates the roadmap for two of the most promising AI approaches --
reinforcement learning and causal inference - and describes why they could help
tip the balance back towards defenders.
- Abstract(参考訳): サイバー犯罪者は、人工知能(AI)を活用して、適応性と盗聴の新たなクラスを可能にする新しい悪意あるツールを急速に開発している。
これらの脅威に対抗するために新しい防御方法を開発する必要がある。
一部のサイバーセキュリティ専門家は、AIが対応するサイバー防衛対策の新たなクラスを可能にすると推測している。
alan turing instituteは、英国国立サイバーセキュリティセンターと防衛科学技術研究所のエキスパートガイダンスで、昨年ai for acdのための研究ロードマップを発表した。
本稿では、最も有望な2つのaiアプローチ - 強化学習と因果推論 - のロードマップをアップデートし、なぜ彼らがディフェンダーに対するバランスを取り戻すのに役立つのかを説明します。
関連論文リスト
- Is Generative AI the Next Tactical Cyber Weapon For Threat Actors? Unforeseen Implications of AI Generated Cyber Attacks [0.0]
本稿では,AIの誤用によるエスカレート脅威,特にLarge Language Models(LLMs)の使用について述べる。
一連の制御された実験を通じて、これらのモデルがどのようにして倫理的およびプライバシー保護を回避し、効果的にサイバー攻撃を発生させるかを実証する。
私たちはまた、サイバー攻撃の自動化と実行のために特別に設計されたカスタマイズされた微調整のLLMであるOccupy AIを紹介します。
論文 参考訳(メタデータ) (2024-08-23T02:56:13Z) - Review of Generative AI Methods in Cybersecurity [0.6990493129893112]
本稿では、Generative AI(GenAI)の現状について概観する。
暴行、脱獄、即時注射と逆心理学の応用をカバーしている。
また、サイバー犯罪におけるGenAIのさまざまな応用として、自動ハッキング、フィッシングメール、ソーシャルエンジニアリング、リバース暗号、攻撃ペイロードの作成、マルウェアの作成などを提供している。
論文 参考訳(メタデータ) (2024-03-13T17:05:05Z) - Towards more Practical Threat Models in Artificial Intelligence Security [66.67624011455423]
最近の研究で、人工知能のセキュリティの研究と実践のギャップが特定されている。
我々は、AIセキュリティ研究で最も研究されている6つの攻撃の脅威モデルを再検討し、実際にAIの使用と一致させる。
論文 参考訳(メタデータ) (2023-11-16T16:09:44Z) - Proceedings of the 2nd International Workshop on Adaptive Cyber Defense [0.0]
第2回アダプティブ・サイバー・ディフェンスに関する国際ワークショップがフロリダ州のフロリダ工科大学で開催された。
このワークショップは、人工知能(AI)と機械学習(ML)のユニークな応用を探求する研究を共有するために組織された。
サイバードメインは現在、人間の専門家に大きく依存することなく、確実かつ効果的に防御することはできない。
論文 参考訳(メタデータ) (2023-08-18T12:56:04Z) - The State-of-the-Art in AI-Based Malware Detection Techniques: A Review [0.0]
このレビューは、マルウェアの検出と防止に使用される最先端のAI技術の概要を明らかにすることを目的としている。
研究対象のアルゴリズムは、浅層学習、深層学習、バイオインスパイアド・コンピューティングである。
この調査はまた、より高度なマルウェアを作成する手段として、サイバー犯罪者によるAIの急速な採用にも触れている。
論文 参考訳(メタデータ) (2022-10-12T16:44:52Z) - Artificial Intelligence for Cybersecurity: Threats, Attacks and
Mitigation [1.80476943513092]
サイバー攻撃の激化は、最近の人工知能の進歩から反響を呼んだ。
AIの介入は特定のタスクを自動化するだけでなく、多くの折り畳みによって効率を向上させる。
本稿では,サイバー攻撃に対する従来的およびインテリジェントな防御方法とともに,サイバーセキュリティとサイバー脅威について論じる。
論文 参考訳(メタデータ) (2022-09-27T15:20:23Z) - Proceedings of the Artificial Intelligence for Cyber Security (AICS)
Workshop at AAAI 2022 [55.573187938617636]
ワークショップは、サイバーセキュリティの問題へのAIの適用に焦点を当てる。
サイバーシステムは大量のデータを生成し、これを効果的に活用することは人間の能力を超えます。
論文 参考訳(メタデータ) (2022-02-28T18:27:41Z) - Fixed Points in Cyber Space: Rethinking Optimal Evasion Attacks in the
Age of AI-NIDS [70.60975663021952]
ネットワーク分類器に対するブラックボックス攻撃について検討する。
我々は、アタッカー・ディフェンダーの固定点がそれ自体、複雑な位相遷移を持つ一般サムゲームであると主張する。
攻撃防御力学の研究には連続的な学習手法が必要であることを示す。
論文 参考訳(メタデータ) (2021-11-23T23:42:16Z) - Automating Privilege Escalation with Deep Reinforcement Learning [71.87228372303453]
本研究では,エージェントの訓練に深層強化学習を用いることで,悪意あるアクターの潜在的な脅威を実証する。
本稿では,最先端の強化学習アルゴリズムを用いて,局所的な特権エスカレーションを行うエージェントを提案する。
我々のエージェントは、実際の攻撃センサーデータを生成し、侵入検知システムの訓練と評価に利用できる。
論文 参考訳(メタデータ) (2021-10-04T12:20:46Z) - The Threat of Offensive AI to Organizations [52.011307264694665]
この調査は、組織に対する攻撃的なAIの脅威を調査する。
まず、AIが敵の方法、戦略、目標、および全体的な攻撃モデルをどのように変えるかについて議論する。
そして、文献レビューを通じて、敵が攻撃を強化するために使用できる33の攻撃的AI能力を特定します。
論文 参考訳(メタデータ) (2021-06-30T01:03:28Z) - Adversarial Machine Learning Attacks and Defense Methods in the Cyber
Security Domain [58.30296637276011]
本稿では,機械学習技術に基づくセキュリティソリューションに対する敵攻撃に関する最新の研究を要約する。
サイバーセキュリティドメインでエンドツーエンドの敵攻撃を実装するという、ユニークな課題を議論するのは、これが初めてである。
論文 参考訳(メタデータ) (2020-07-05T18:22:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。