Safety-enhanced UAV Path Planning with Spherical Vector-based Particle
Swarm Optimization
- URL: http://arxiv.org/abs/2104.10033v1
- Date: Tue, 13 Apr 2021 06:45:11 GMT
- Title: Safety-enhanced UAV Path Planning with Spherical Vector-based Particle
Swarm Optimization
- Authors: Manh Duong Phung and Quang Phuc Ha
- Abstract summary: This paper presents a new algorithm named spherical vector-based particle swarm optimization (SPSO) to deal with the problem of path planning for unmanned aerial vehicles (UAVs)
A cost function is first formulated to convert the path planning into an optimization problem that incorporates requirements and constraints for the feasible and safe operation of the UAV.
SPSO is then used to find the optimal path that minimizes the cost function by efficiently searching the configuration space of the UAV.
- Score: 5.076419064097734
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper presents a new algorithm named spherical vector-based particle
swarm optimization (SPSO) to deal with the problem of path planning for
unmanned aerial vehicles (UAVs) in complicated environments subjected to
multiple threats. A cost function is first formulated to convert the path
planning into an optimization problem that incorporates requirements and
constraints for the feasible and safe operation of the UAV. SPSO is then used
to find the optimal path that minimizes the cost function by efficiently
searching the configuration space of the UAV via the correspondence between the
particle position and the speed, turn angle and climb/dive angle of the UAV. To
evaluate the performance of SPSO, eight benchmarking scenarios have been
generated from real digital elevation model maps. The results show that the
proposed SPSO outperforms not only other particle swarm optimization (PSO)
variants including the classic PSO, phase angle-encoded PSO and quantum-behave
PSO but also other state-of-the-art metaheuristic optimization algorithms
including the genetic algorithm (GA), artificial bee colony (ABC), and
differential evolution (DE) in most scenarios. In addition, experiments have
been conducted to demonstrate the validity of the generated paths for real UAV
operations. Source code of the algorithm can be found at
https://github.com/duongpm/SPSO.
Related papers
- Path Planning in a dynamic environment using Spherical Particle Swarm Optimization [0.0]
A Dynamic Path Planner (DPP) for UAV using the Spherical Vector-based Particle Swarm optimisation technique is proposed in this study.
The path is constructed as a set of way-points that stands as re-planning checkpoints. Path length, Safety, Attitude and Path Smoothness are all taken into account upon deciding how an optimal path should be.
Four test scenarios are carried out using real digital elevation models. Each test gives different priorities to path length and safety, in order to show how well the SPSO-DPP is capable of generating a safe yet efficient path segments.
arXiv Detail & Related papers (2024-03-19T13:56:34Z) - Stochastic Optimal Control Matching [53.156277491861985]
Our work introduces Optimal Control Matching (SOCM), a novel Iterative Diffusion Optimization (IDO) technique for optimal control.
The control is learned via a least squares problem by trying to fit a matching vector field.
Experimentally, our algorithm achieves lower error than all the existing IDO techniques for optimal control.
arXiv Detail & Related papers (2023-12-04T16:49:43Z) - Learning Regions of Interest for Bayesian Optimization with Adaptive
Level-Set Estimation [84.0621253654014]
We propose a framework, called BALLET, which adaptively filters for a high-confidence region of interest.
We show theoretically that BALLET can efficiently shrink the search space, and can exhibit a tighter regret bound than standard BO.
arXiv Detail & Related papers (2023-07-25T09:45:47Z) - Integrated Sensing, Computation, and Communication for UAV-assisted
Federated Edge Learning [52.7230652428711]
Federated edge learning (FEEL) enables privacy-preserving model training through periodic communication between edge devices and the server.
Unmanned Aerial Vehicle (UAV)mounted edge devices are particularly advantageous for FEEL due to their flexibility and mobility in efficient data collection.
arXiv Detail & Related papers (2023-06-05T16:01:33Z) - Fast Computation of Optimal Transport via Entropy-Regularized Extragradient Methods [75.34939761152587]
Efficient computation of the optimal transport distance between two distributions serves as an algorithm that empowers various applications.
This paper develops a scalable first-order optimization-based method that computes optimal transport to within $varepsilon$ additive accuracy.
arXiv Detail & Related papers (2023-01-30T15:46:39Z) - Entropic Neural Optimal Transport via Diffusion Processes [105.34822201378763]
We propose a novel neural algorithm for the fundamental problem of computing the entropic optimal transport (EOT) plan between continuous probability distributions.
Our algorithm is based on the saddle point reformulation of the dynamic version of EOT which is known as the Schr"odinger Bridge problem.
In contrast to the prior methods for large-scale EOT, our algorithm is end-to-end and consists of a single learning step.
arXiv Detail & Related papers (2022-11-02T14:35:13Z) - Joint Optimization of Deployment and Trajectory in UAV and IRS-Assisted
IoT Data Collection System [25.32139119893323]
Unmanned aerial vehicles (UAVs) can be applied in many Internet of Things (IoT) systems.
The UAV-IoT wireless channels may be occasionally blocked by trees or high-rise buildings.
This article aims to minimize the energy consumption of the system by jointly optimizing the deployment and trajectory of the UAV.
arXiv Detail & Related papers (2022-10-27T06:27:40Z) - Enhanced Teaching-Learning-based Optimization for 3D Path Planning of
Multicopter UAVs [2.0305676256390934]
This paper introduces a new path planning algorithm for unmanned aerial vehicles (UAVs) based on the teaching-learning-based optimization technique.
We first define an objective function that incorporates requirements on the path length and constraints on the movement and safe operation of UAVs.
The algorithm named Multi-subject TLBO is then proposed to minimize the formulated objective function.
arXiv Detail & Related papers (2022-05-31T16:00:32Z) - Revisiting and Advancing Fast Adversarial Training Through The Lens of
Bi-Level Optimization [60.72410937614299]
We propose a new tractable bi-level optimization problem, design and analyze a new set of algorithms termed Bi-level AT (FAST-BAT)
FAST-BAT is capable of defending sign-based projected descent (PGD) attacks without calling any gradient sign method and explicit robust regularization.
arXiv Detail & Related papers (2021-12-23T06:25:36Z) - Using Particle Swarm Optimization as Pathfinding Strategy in a Space
with Obstacles [4.899469599577755]
Particle swarm optimization (PSO) is a search algorithm based on and population-based adaptive optimization.
In this paper, a pathfinding strategy is proposed to improve the efficiency of path planning for a broad range of applications.
arXiv Detail & Related papers (2021-12-16T12:16:02Z) - Motion-Encoded Particle Swarm Optimization for Moving Target Search
Using UAVs [4.061135251278187]
This paper presents a novel algorithm named the motion-encoded particle swarm optimization (MPSO) for finding a moving target with unmanned aerial vehicles (UAVs)
The proposed MPSO is developed to solve that problem by encoding the search trajectory as a series of UAV motion paths evolving over the generation of particles in a PSO algorithm.
Results from extensive simulations with existing methods show that the proposed MPSO improves the detection performance by 24% and time performance by 4.71 times compared to the original PSO.
arXiv Detail & Related papers (2020-10-05T14:17:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.