Bias-Aware Loss for Training Image and Speech Quality Prediction Models
from Multiple Datasets
- URL: http://arxiv.org/abs/2104.10217v1
- Date: Tue, 20 Apr 2021 19:20:11 GMT
- Title: Bias-Aware Loss for Training Image and Speech Quality Prediction Models
from Multiple Datasets
- Authors: Gabriel Mittag, Saman Zadtootaghaj, Thilo Michael, Babak Naderi,
Sebastian M\"oller
- Abstract summary: We propose a bias-aware loss function that estimates each dataset's biases during training with a linear function.
We prove the efficiency of the proposed method by training and validating quality prediction models on synthetic and subjective image and speech quality datasets.
- Score: 13.132388683797503
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The ground truth used for training image, video, or speech quality prediction
models is based on the Mean Opinion Scores (MOS) obtained from subjective
experiments. Usually, it is necessary to conduct multiple experiments, mostly
with different test participants, to obtain enough data to train quality models
based on machine learning. Each of these experiments is subject to an
experiment-specific bias, where the rating of the same file may be
substantially different in two experiments (e.g. depending on the overall
quality distribution). These different ratings for the same distortion levels
confuse neural networks during training and lead to lower performance. To
overcome this problem, we propose a bias-aware loss function that estimates
each dataset's biases during training with a linear function and considers it
while optimising the network weights. We prove the efficiency of the proposed
method by training and validating quality prediction models on synthetic and
subjective image and speech quality datasets.
Related papers
- The Mirrored Influence Hypothesis: Efficient Data Influence Estimation by Harnessing Forward Passes [30.30769701138665]
We introduce and explore the Mirrored Influence Hypothesis, highlighting a reciprocal nature of influence between training and test data.
Specifically, it suggests that evaluating the influence of training data on test predictions can be reformulated as an equivalent, yet inverse problem.
We introduce a new method for estimating the influence of training data, which requires calculating gradients for specific test samples, paired with a forward pass for each training point.
arXiv Detail & Related papers (2024-02-14T03:43:05Z) - Understanding and Mitigating the Label Noise in Pre-training on
Downstream Tasks [91.15120211190519]
This paper aims to understand the nature of noise in pre-training datasets and to mitigate its impact on downstream tasks.
We propose a light-weight black-box tuning method (NMTune) to affine the feature space to mitigate the malignant effect of noise.
arXiv Detail & Related papers (2023-09-29T06:18:15Z) - Effective Robustness against Natural Distribution Shifts for Models with
Different Training Data [113.21868839569]
"Effective robustness" measures the extra out-of-distribution robustness beyond what can be predicted from the in-distribution (ID) performance.
We propose a new evaluation metric to evaluate and compare the effective robustness of models trained on different data.
arXiv Detail & Related papers (2023-02-02T19:28:41Z) - Feature-Level Debiased Natural Language Understanding [86.8751772146264]
Existing natural language understanding (NLU) models often rely on dataset biases to achieve high performance on specific datasets.
We propose debiasing contrastive learning (DCT) to mitigate biased latent features and neglect the dynamic nature of bias.
DCT outperforms state-of-the-art baselines on out-of-distribution datasets while maintaining in-distribution performance.
arXiv Detail & Related papers (2022-12-11T06:16:14Z) - CONVIQT: Contrastive Video Quality Estimator [63.749184706461826]
Perceptual video quality assessment (VQA) is an integral component of many streaming and video sharing platforms.
Here we consider the problem of learning perceptually relevant video quality representations in a self-supervised manner.
Our results indicate that compelling representations with perceptual bearing can be obtained using self-supervised learning.
arXiv Detail & Related papers (2022-06-29T15:22:01Z) - FairIF: Boosting Fairness in Deep Learning via Influence Functions with
Validation Set Sensitive Attributes [51.02407217197623]
We propose a two-stage training algorithm named FAIRIF.
It minimizes the loss over the reweighted data set where the sample weights are computed.
We show that FAIRIF yields models with better fairness-utility trade-offs against various types of bias.
arXiv Detail & Related papers (2022-01-15T05:14:48Z) - Robust Fairness-aware Learning Under Sample Selection Bias [17.09665420515772]
We propose a framework for robust and fair learning under sample selection bias.
We develop two algorithms to handle sample selection bias when test data is both available and unavailable.
arXiv Detail & Related papers (2021-05-24T23:23:36Z) - Reinforced Curriculum Learning on Pre-trained Neural Machine Translation
Models [20.976165305749777]
We learn a curriculum for improving a pre-trained NMT model by re-selecting influential data samples from the original training set.
We propose a data selection framework based on Deterministic Actor-Critic, in which a critic network predicts the expected change of model performance.
arXiv Detail & Related papers (2020-04-13T03:40:44Z) - Fine-Tuning Pretrained Language Models: Weight Initializations, Data
Orders, and Early Stopping [62.78338049381917]
Fine-tuning pretrained contextual word embedding models to supervised downstream tasks has become commonplace in natural language processing.
We experiment with four datasets from the GLUE benchmark, fine-tuning BERT hundreds of times on each while varying only the random seeds.
We find substantial performance increases compared to previously reported results, and we quantify how the performance of the best-found model varies as a function of the number of fine-tuning trials.
arXiv Detail & Related papers (2020-02-15T02:40:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.