論文の概要: PocketNet: A Smaller Neural Network for 3D Medical Image Segmentation
- arxiv url: http://arxiv.org/abs/2104.10745v1
- Date: Wed, 21 Apr 2021 20:10:30 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-24 01:03:41.334201
- Title: PocketNet: A Smaller Neural Network for 3D Medical Image Segmentation
- Title(参考訳): PocketNet: 3D画像分割のためのより小さなニューラルネットワーク
- Authors: Adrian Celaya, Jonas Actor, Rajarajeswari Muthusivarajan, Evan Gates,
Caroline Chung, Dawid Schellingerhout, Beatrice Riviere, David Fuentes
- Abstract要約: 私たちは、パラメータの数の3%未満を使用しながら、従来のCNNに匹敵するセグメンテーション結果を達成するPocketNetと呼ばれる新しいCNNアーキテクチャを導き出します。
我々は,PocketNetが従来のCNNに匹敵するセグメンテーション結果を達成し,パラメータ数の3%未満を用いていることを示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Overparameterized deep learning networks have shown impressive performance in
the area of automatic medical image segmentation. However, they achieve this
performance at an enormous cost in memory, runtime, and energy. A large source
of overparameterization in modern neural networks results from doubling the
number of feature maps with each downsampling layer. This rapid growth in the
number of parameters results in network architectures that require a
significant amount of computing resources, making them less accessible and
difficult to use. By keeping the number of feature maps constant throughout the
network, we derive a new CNN architecture called PocketNet that achieves
comparable segmentation results to conventional CNNs while using less than 3%
of the number of parameters.
- Abstract(参考訳): 過剰パラメータのディープラーニングネットワークは、自動医療画像セグメンテーションの分野で素晴らしいパフォーマンスを示している。
しかし、メモリ、ランタイム、エネルギの大幅なコストでこのパフォーマンスを達成しています。
現代のニューラルネットワークにおける過パラメータ化の大きな源は、各ダウンサンプリング層で特徴マップの数を2倍にすることだ。
このパラメータの急激な増加は、大量のコンピューティングリソースを必要とするネットワークアーキテクチャの結果として実現され、アクセスしにくく、使用が困難になる。
ネットワーク全体の機能マップ数を一定に保つことで、従来のCNNと同等のセグメンテーション結果が得られるPocketNetと呼ばれる新しいCNNアーキテクチャが導出され、パラメータの3%未満を使用します。
関連論文リスト
- RedBit: An End-to-End Flexible Framework for Evaluating the Accuracy of
Quantized CNNs [9.807687918954763]
畳み込みニューラルネットワーク(CNN)は、画像処理、分類、セグメンテーションタスクのためのディープニューラルネットワークの標準クラスとなっている。
RedBitは、透過的で使いやすいインターフェースを提供するオープンソースのフレームワークで、異なるアルゴリズムの有効性をネットワークの精度で評価する。
論文 参考訳(メタデータ) (2023-01-15T21:27:35Z) - GLEAM: Greedy Learning for Large-Scale Accelerated MRI Reconstruction [50.248694764703714]
アンロールされたニューラルネットワークは、最近最先端の加速MRI再構成を達成した。
これらのネットワークは、物理ベースの一貫性とニューラルネットワークベースの正規化を交互に組み合わせることで、反復最適化アルゴリズムをアンロールする。
我々は,高次元画像設定のための効率的なトレーニング戦略である加速度MRI再構成のためのグレディ・ラーニングを提案する。
論文 参考訳(メタデータ) (2022-07-18T06:01:29Z) - Variable Bitrate Neural Fields [75.24672452527795]
本稿では,特徴格子を圧縮し,メモリ消費を最大100倍に削減する辞書手法を提案する。
辞書の最適化をベクトル量子化オートデコーダ問題として定式化し、直接監督できない空間において、エンドツーエンドの離散神経表現を学習する。
論文 参考訳(メタデータ) (2022-06-15T17:58:34Z) - Binary Neural Network for Speaker Verification [13.472791713805762]
本稿では,二元的ニューラルネットワークを話者検証の課題に適用する方法に焦点をあてる。
実験の結果、Convolutional Neural Networkをバイナライズした後、ResNet34ベースのネットワークは約5%のEERを達成した。
論文 参考訳(メタデータ) (2021-04-06T06:04:57Z) - CoTr: Efficiently Bridging CNN and Transformer for 3D Medical Image
Segmentation [95.51455777713092]
畳み込みニューラルネットワーク(CNN)は、現代の3D医療画像セグメンテーションのデファクトスタンダードとなっている。
本稿では,bf畳み込みニューラルネットワークとbfトランスbf(cotr)を効率良く橋渡しし,正確な3次元医用画像分割を実現する新しい枠組みを提案する。
論文 参考訳(メタデータ) (2021-03-04T13:34:22Z) - ItNet: iterative neural networks with small graphs for accurate and
efficient anytime prediction [1.52292571922932]
本研究では,計算グラフの観点から,メモリフットプリントが小さいネットワークモデルについて紹介する。
CamVidおよびCityscapesデータセットでセマンティックセグメンテーションの最新の結果を示します。
論文 参考訳(メタデータ) (2021-01-21T15:56:29Z) - Binary Graph Neural Networks [69.51765073772226]
グラフニューラルネットワーク(gnns)は、不規則データに対する表現学習のための強力で柔軟なフレームワークとして登場した。
本稿では,グラフニューラルネットワークのバイナライゼーションのための異なる戦略を提示し,評価する。
モデルの慎重な設計とトレーニングプロセスの制御によって、バイナリグラフニューラルネットワークは、挑戦的なベンチマークの精度において、適度なコストでトレーニングできることを示しています。
論文 参考訳(メタデータ) (2020-12-31T18:48:58Z) - Multigrid-in-Channels Architectures for Wide Convolutional Neural
Networks [6.929025509877642]
本稿では,標準畳み込みニューラルネットワーク(CNN)のチャネル数に関して,パラメータ数の2次成長に対処するマルチグリッド手法を提案する。
教師付き画像分類の例では、この戦略を残差ネットワークに適用し、MobileNetV2は精度に悪影響を及ぼすことなくパラメータ数を著しく削減している。
論文 参考訳(メタデータ) (2020-06-11T20:28:36Z) - DRU-net: An Efficient Deep Convolutional Neural Network for Medical
Image Segmentation [2.3574651879602215]
残留ネットワーク(ResNet)と密結合ネットワーク(DenseNet)は、ディープ畳み込みニューラルネットワーク(DCNN)のトレーニング効率と性能を大幅に改善した。
両ネットワークの利点を考慮した効率的なネットワークアーキテクチャを提案する。
論文 参考訳(メタデータ) (2020-04-28T12:16:24Z) - CRNet: Cross-Reference Networks for Few-Shot Segmentation [59.85183776573642]
少ないショットセグメンテーションは、少数のトレーニングイメージを持つ新しいクラスに一般化できるセグメンテーションモデルを学ぶことを目的としている。
相互参照機構により、我々のネットワークは2つの画像に共起する物体をよりよく見つけることができる。
PASCAL VOC 2012データセットの実験は、我々のネットワークが最先端のパフォーマンスを達成することを示す。
論文 参考訳(メタデータ) (2020-03-24T04:55:43Z) - Real-Time High-Performance Semantic Image Segmentation of Urban Street
Scenes [98.65457534223539]
都市景観のロバストなセマンティックセマンティックセグメンテーションのためのリアルタイムDCNNに基づく高速DCNN手法を提案する。
提案手法は, 51.0 fps と 39.3 fps の推論速度で, 平均 73.6% と平均 68.0% (mIoU) の精度を実現する。
論文 参考訳(メタデータ) (2020-03-11T08:45:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。