Improvements on Device Independent and Semi-Device Independent Protocols
of Randomness Expansion
- URL: http://arxiv.org/abs/2311.13528v1
- Date: Wed, 22 Nov 2023 17:03:04 GMT
- Title: Improvements on Device Independent and Semi-Device Independent Protocols
of Randomness Expansion
- Authors: Rutvij Bhavsar
- Abstract summary: Device Independent (DI) and Semi-Device Independent (semi-DI) protocols of randomness expansion are discussed.
We introduce enhanced DI and semi-DI protocols that surpass existing ones in terms of output randomness rate, security, or in some instances, both.
A notable contribution is the introduction of randomness expansion protocols that recycle input randomness, significantly enhancing finite round randomness rates for DI protocols based on the CHSH inequality violation.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: To generate genuine random numbers, random number generators based on quantum
theory are essential. However, ensuring that the process used to produce
randomness meets desired security standards can pose challenges for traditional
quantum random number generators. This thesis delves into Device Independent
(DI) and Semi-Device Independent (semi-DI) protocols of randomness expansion,
based on a minimal set of experimentally verifiable security assumptions. The
security in DI protocols relies on the violation of Bell inequalities, which
certify the quantum behavior of devices. The semi-DI protocols discussed in
this thesis require the characterization of only one device - a power meter.
These protocols exploit the fact that quantum states can be prepared such that
they cannot be distinguished with certainty, thereby creating a randomness
resource. In this study, we introduce enhanced DI and semi-DI protocols that
surpass existing ones in terms of output randomness rate, security, or in some
instances, both. Our analysis employs the Entropy Accumulation Theorem (EAT) to
determine the extractable randomness for finite rounds. A notable contribution
is the introduction of randomness expansion protocols that recycle input
randomness, significantly enhancing finite round randomness rates for DI
protocols based on the CHSH inequality violation. In the final section of the
thesis, we delve into Generalized Probability Theories (GPTs), with a focus on
Boxworld, the largest GPT capable of producing correlations consistent with
relativity. A tractable criterion for identifying a Boxworld channel is
presented.
Related papers
- Conformal Generative Modeling with Improved Sample Efficiency through Sequential Greedy Filtering [55.15192437680943]
Generative models lack rigorous statistical guarantees for their outputs.
We propose a sequential conformal prediction method producing prediction sets that satisfy a rigorous statistical guarantee.
This guarantee states that with high probability, the prediction sets contain at least one admissible (or valid) example.
arXiv Detail & Related papers (2024-10-02T15:26:52Z) - Incorporating Zero-Probability Constraints to Device-Independent
Randomness Expansion [11.765274200974774]
We explore various forms of randomness that are certifiable in the so-called device-independent (DI) paradigm.
In this work, we determine the certifiable randomness when zero-probability constraints are incorporated into the task of DI randomness expansion.
arXiv Detail & Related papers (2024-01-16T15:57:17Z) - Quantum Conformal Prediction for Reliable Uncertainty Quantification in
Quantum Machine Learning [47.991114317813555]
Quantum models implement implicit probabilistic predictors that produce multiple random decisions for each input through measurement shots.
This paper proposes to leverage such randomness to define prediction sets for both classification and regression that provably capture the uncertainty of the model.
arXiv Detail & Related papers (2023-04-06T22:05:21Z) - Importance sampling for stochastic quantum simulations [68.8204255655161]
We introduce the qDrift protocol, which builds random product formulas by sampling from the Hamiltonian according to the coefficients.
We show that the simulation cost can be reduced while achieving the same accuracy, by considering the individual simulation cost during the sampling stage.
Results are confirmed by numerical simulations performed on a lattice nuclear effective field theory.
arXiv Detail & Related papers (2022-12-12T15:06:32Z) - Testing randomness of series generated in Bell's experiment [62.997667081978825]
We use a toy fiber optic based setup to generate binary series, and evaluate their level of randomness according to Ville principle.
Series are tested with a battery of standard statistical indicators, Hurst, Kolmogorov complexity, minimum entropy, Takensarity dimension of embedding, and Augmented Dickey Fuller and Kwiatkowski Phillips Schmidt Shin to check station exponent.
The level of randomness of series obtained by applying Toeplitz extractor to rejected series is found to be indistinguishable from the level of non-rejected raw ones.
arXiv Detail & Related papers (2022-08-31T17:39:29Z) - Sampling-Based Robust Control of Autonomous Systems with Non-Gaussian
Noise [59.47042225257565]
We present a novel planning method that does not rely on any explicit representation of the noise distributions.
First, we abstract the continuous system into a discrete-state model that captures noise by probabilistic transitions between states.
We capture these bounds in the transition probability intervals of a so-called interval Markov decision process (iMDP)
arXiv Detail & Related papers (2021-10-25T06:18:55Z) - Semi-device-independent full randomness amplification based on energy
bounds [0.0]
Quantum Bell nonlocality allows for the design of protocols that amplify the randomness of public and arbitrarily biased Santha-Vazirani sources.
We prove that full randomness amplification can be achieved without requiring a complete characterization of entanglement states and measurements.
arXiv Detail & Related papers (2021-08-20T10:34:01Z) - Practical Semi-Device Independent Randomness Generation Based on Quantum
State's Indistinguishability [0.0]
We present a proof-of-principle time-bin encoding semi-DI QRNG experiments based on a prepare-and-measure scheme.
We lower-bound the conditional min-entropy from the energy-bound and the input-output correlation, determining the amount of genuine randomness that can be certified.
arXiv Detail & Related papers (2021-04-22T15:39:36Z) - Improved device-independent randomness expansion rates using two sided
randomness [3.4376560669160394]
A device-independent randomness expansion protocol aims to take an initial random string and generate a longer one.
We investigate the possible improvement that could be gained using the two-sided randomness.
We also consider a modified protocol in which the input randomness is recycled.
arXiv Detail & Related papers (2021-03-12T19:49:17Z) - Certified Randomness From Steering Using Sequential Measurements [0.0]
A single entangled two-qubit pure state can be used to produce arbitrary amounts of certified randomness.
Motivated by these difficulties in the device-independent setting, we consider the scenario of one-sided device independence.
We show how certain aspects of previous work can be adapted to this scenario and provide theoretical bounds on the amount of randomness which can be certified.
arXiv Detail & Related papers (2020-08-03T08:18:29Z) - Gaussian conversion protocols for cubic phase state generation [104.23865519192793]
Universal quantum computing with continuous variables requires non-Gaussian resources.
The cubic phase state is a non-Gaussian state whose experimental implementation has so far remained elusive.
We introduce two protocols that allow for the conversion of a non-Gaussian state to a cubic phase state.
arXiv Detail & Related papers (2020-07-07T09:19:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.