Grouped Feature Importance and Combined Features Effect Plot
- URL: http://arxiv.org/abs/2104.11688v1
- Date: Fri, 23 Apr 2021 16:27:38 GMT
- Title: Grouped Feature Importance and Combined Features Effect Plot
- Authors: Quay Au, Julia Herbinger, Clemens Stachl, Bernd Bischl, Giuseppe
Casalicchio
- Abstract summary: Interpretable machine learning has become a very active area of research due to the rising popularity of machine learning algorithms.
We provide a comprehensive overview of how existing model-agnostic techniques can be defined for feature groups to assess the grouped feature importance.
We introduce the combined features effect plot, which is a technique to visualize the effect of a group of features based on a sparse, interpretable linear combination of features.
- Score: 2.15867006052733
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Interpretable machine learning has become a very active area of research due
to the rising popularity of machine learning algorithms and their inherently
challenging interpretability. Most work in this area has been focused on the
interpretation of single features in a model. However, for researchers and
practitioners, it is often equally important to quantify the importance or
visualize the effect of feature groups. To address this research gap, we
provide a comprehensive overview of how existing model-agnostic techniques can
be defined for feature groups to assess the grouped feature importance,
focusing on permutation-based, refitting, and Shapley-based methods. We also
introduce an importance-based sequential procedure that identifies a stable and
well-performing combination of features in the grouped feature space.
Furthermore, we introduce the combined features effect plot, which is a
technique to visualize the effect of a group of features based on a sparse,
interpretable linear combination of features. We used simulation studies and a
real data example from computational psychology to analyze, compare, and
discuss these methods.
Related papers
- Interpetable Target-Feature Aggregation for Multi-Task Learning based on Bias-Variance Analysis [53.38518232934096]
Multi-task learning (MTL) is a powerful machine learning paradigm designed to leverage shared knowledge across tasks to improve generalization and performance.
We propose an MTL approach at the intersection between task clustering and feature transformation based on a two-phase iterative aggregation of targets and features.
In both phases, a key aspect is to preserve the interpretability of the reduced targets and features through the aggregation with the mean, which is motivated by applications to Earth science.
arXiv Detail & Related papers (2024-06-12T08:30:16Z) - Feature graphs for interpretable unsupervised tree ensembles: centrality, interaction, and application in disease subtyping [0.24578723416255746]
Feature selection assumes a pivotal role in enhancing model interpretability.
The accuracy gained from aggregating decision trees comes at the expense of interpretability.
The study introduces novel methods to construct feature graphs from unsupervised random forests.
arXiv Detail & Related papers (2024-04-27T12:47:37Z) - A Contrast Based Feature Selection Algorithm for High-dimensional Data
set in Machine Learning [9.596923373834093]
We propose a novel filter feature selection method, ContrastFS, which selects discriminative features based on the discrepancies features shown between different classes.
We validate effectiveness and efficiency of our approach on several widely studied benchmark datasets, results show that the new method performs favorably with negligible computation.
arXiv Detail & Related papers (2024-01-15T05:32:35Z) - Relational Local Explanations [11.679389861042]
We develop a novel model-agnostic and permutation-based feature attribution algorithm based on relational analysis between input variables.
We are able to gain a broader insight into machine learning model decisions and data.
arXiv Detail & Related papers (2022-12-23T14:46:23Z) - Self-Attention Neural Bag-of-Features [103.70855797025689]
We build on the recently introduced 2D-Attention and reformulate the attention learning methodology.
We propose a joint feature-temporal attention mechanism that learns a joint 2D attention mask highlighting relevant information.
arXiv Detail & Related papers (2022-01-26T17:54:14Z) - Transforming Feature Space to Interpret Machine Learning Models [91.62936410696409]
This contribution proposes a novel approach that interprets machine-learning models through the lens of feature space transformations.
It can be used to enhance unconditional as well as conditional post-hoc diagnostic tools.
A case study on remote-sensing landcover classification with 46 features is used to demonstrate the potential of the proposed approach.
arXiv Detail & Related papers (2021-04-09T10:48:11Z) - Linear Classifier Combination via Multiple Potential Functions [0.6091702876917279]
We propose a novel concept of calculating a scoring function based on the distance of the object from the decision boundary and its distance to the class centroid.
An important property is that the proposed score function has the same nature for all linear base classifiers.
arXiv Detail & Related papers (2020-10-02T08:11:51Z) - A Trainable Optimal Transport Embedding for Feature Aggregation and its
Relationship to Attention [96.77554122595578]
We introduce a parametrized representation of fixed size, which embeds and then aggregates elements from a given input set according to the optimal transport plan between the set and a trainable reference.
Our approach scales to large datasets and allows end-to-end training of the reference, while also providing a simple unsupervised learning mechanism with small computational cost.
arXiv Detail & Related papers (2020-06-22T08:35:58Z) - Causal Feature Selection for Algorithmic Fairness [61.767399505764736]
We consider fairness in the integration component of data management.
We propose an approach to identify a sub-collection of features that ensure the fairness of the dataset.
arXiv Detail & Related papers (2020-06-10T20:20:10Z) - Task-Feature Collaborative Learning with Application to Personalized
Attribute Prediction [166.87111665908333]
We propose a novel multi-task learning method called Task-Feature Collaborative Learning (TFCL)
Specifically, we first propose a base model with a heterogeneous block-diagonal structure regularizer to leverage the collaborative grouping of features and tasks.
As a practical extension, we extend the base model by allowing overlapping features and differentiating the hard tasks.
arXiv Detail & Related papers (2020-04-29T02:32:04Z) - FDive: Learning Relevance Models using Pattern-based Similarity Measures [27.136998442865217]
We present FDive, a visual active learning system that helps to create visually explorable relevance models.
Based on the best-ranked similarity measure, the system calculates an interactive Self-Organizing Map-based relevance model.
It also automatically prompts further relevance feedback to improve its accuracy.
arXiv Detail & Related papers (2019-07-29T15:37:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.