Safe Chance Constrained Reinforcement Learning for Batch Process Control
- URL: http://arxiv.org/abs/2104.11706v1
- Date: Fri, 23 Apr 2021 16:48:46 GMT
- Title: Safe Chance Constrained Reinforcement Learning for Batch Process Control
- Authors: Max Mowbray, Panagiotis Petsagkourakis, Ehecatl Antonio del R\'io
Chanona, Robin Smith, Dongda Zhang
- Abstract summary: Reinforcement Learning (RL) controllers have generated excitement within the control community.
Recent focus on engineering applications has been directed towards the development of safe RL controllers.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Reinforcement Learning (RL) controllers have generated excitement within the
control community. The primary advantage of RL controllers relative to existing
methods is their ability to optimize uncertain systems independently of
explicit assumption of process uncertainty. Recent focus on engineering
applications has been directed towards the development of safe RL controllers.
Previous works have proposed approaches to account for constraint satisfaction
through constraint tightening from the domain of stochastic model predictive
control. Here, we extend these approaches to account for plant-model mismatch.
Specifically, we propose a data-driven approach that utilizes Gaussian
processes for the offline simulation model and use the associated posterior
uncertainty prediction to account for joint chance constraints and plant-model
mismatch. The method is benchmarked against nonlinear model predictive control
via case studies. The results demonstrate the ability of the methodology to
account for process uncertainty, enabling satisfaction of joint chance
constraints even in the presence of plant-model mismatch.
Related papers
- Forking Uncertainties: Reliable Prediction and Model Predictive Control
with Sequence Models via Conformal Risk Control [40.918012779935246]
We introduce a novel post-hoc calibration procedure that operates on the predictions produced by any pre-designed probabilistic forecaster to yield reliable error bars.
Unlike the state of the art, PTS-CRC can satisfy reliability definitions beyond coverage.
We experimentally validate the performance of PTS-CRC prediction and control by studying a number of use cases in the context of wireless networking.
arXiv Detail & Related papers (2023-10-16T11:35:41Z) - Model Predictive Control with Gaussian-Process-Supported Dynamical
Constraints for Autonomous Vehicles [82.65261980827594]
We propose a model predictive control approach for autonomous vehicles that exploits learned Gaussian processes for predicting human driving behavior.
A multi-mode predictive control approach considers the possible intentions of the human drivers.
arXiv Detail & Related papers (2023-03-08T17:14:57Z) - Error-based Knockoffs Inference for Controlled Feature Selection [49.99321384855201]
We propose an error-based knockoff inference method by integrating the knockoff features, the error-based feature importance statistics, and the stepdown procedure together.
The proposed inference procedure does not require specifying a regression model and can handle feature selection with theoretical guarantees.
arXiv Detail & Related papers (2022-03-09T01:55:59Z) - Probabilistic robust linear quadratic regulators with Gaussian processes [73.0364959221845]
Probabilistic models such as Gaussian processes (GPs) are powerful tools to learn unknown dynamical systems from data for subsequent use in control design.
We present a novel controller synthesis for linearized GP dynamics that yields robust controllers with respect to a probabilistic stability margin.
arXiv Detail & Related papers (2021-05-17T08:36:18Z) - Constrained Model-Free Reinforcement Learning for Process Optimization [0.0]
Reinforcement learning (RL) is a control approach that can handle nonlinear optimal control problems.
Despite the promise exhibited, RL has yet to see marked translation to industrial practice.
We propose an 'oracle'-assisted constrained Q-learning algorithm that guarantees the satisfaction of joint chance constraints with a high probability.
arXiv Detail & Related papers (2020-11-16T13:16:22Z) - Gaussian Process-based Min-norm Stabilizing Controller for
Control-Affine Systems with Uncertain Input Effects and Dynamics [90.81186513537777]
We propose a novel compound kernel that captures the control-affine nature of the problem.
We show that this resulting optimization problem is convex, and we call it Gaussian Process-based Control Lyapunov Function Second-Order Cone Program (GP-CLF-SOCP)
arXiv Detail & Related papers (2020-11-14T01:27:32Z) - Constrained Model-based Reinforcement Learning with Robust Cross-Entropy
Method [30.407700996710023]
This paper studies the constrained/safe reinforcement learning problem with sparse indicator signals for constraint violations.
We employ the neural network ensemble model to estimate the prediction uncertainty and use model predictive control as the basic control framework.
The results show that our approach learns to complete the tasks with a much smaller number of constraint violations than state-of-the-art baselines.
arXiv Detail & Related papers (2020-10-15T18:19:35Z) - Control as Hybrid Inference [62.997667081978825]
We present an implementation of CHI which naturally mediates the balance between iterative and amortised inference.
We verify the scalability of our algorithm on a continuous control benchmark, demonstrating that it outperforms strong model-free and model-based baselines.
arXiv Detail & Related papers (2020-07-11T19:44:09Z) - Reinforcement Learning for Safety-Critical Control under Model
Uncertainty, using Control Lyapunov Functions and Control Barrier Functions [96.63967125746747]
Reinforcement learning framework learns the model uncertainty present in the CBF and CLF constraints.
RL-CBF-CLF-QP addresses the problem of model uncertainty in the safety constraints.
arXiv Detail & Related papers (2020-04-16T10:51:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.