Polarization-orbital angular momentum duality assisted entanglement
observation for indistinguishable photons
- URL: http://arxiv.org/abs/2104.11784v1
- Date: Fri, 23 Apr 2021 18:58:33 GMT
- Title: Polarization-orbital angular momentum duality assisted entanglement
observation for indistinguishable photons
- Authors: Nijil Lal, Sarika Mishra, Anju Rani, Anindya Banerji, Chithrabhanu
Perumangattu and R. P. Singh
- Abstract summary: Duality in the entanglement of identical particles manifests that entanglement in only one variable can be revealed at a time.
We show polarization entanglement by sorting photons in even and odd OAM basis, while sorting them in two polarization modes reveals the OAM entanglement.
- Score: 0.6524460254566905
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Duality in the entanglement of identical particles manifests that
entanglement in only one variable can be revealed at a time. We demonstrate
this using polarization and orbital angular momentum (OAM) variables of
indistinguishable photons generated from parametric down conversion. We show
polarization entanglement by sorting photons in even and odd OAM basis, while
sorting them in two orthogonal polarization modes reveals the OAM entanglement.
The duality assisted observation of entanglement can be used as a verification
for the preservation of quantum indistinguishability over communication
channels. Indistinguishable photons entangled in complementary variables could
also evoke interest in distributed quantum sensing protocols and remote
entanglement generation.
Related papers
- Temporal quantum eraser: Fusion gates with distinguishable photons [0.0]
We show that the ideal operation of two-photon gates can be recovered from distinguishable photons.
We introduce a temporal quantum eraser between a pair of modally-impure single-photon sources.
The ability to lift the requirement for identical photons bears considerable potential in linear-optics quantum information processing.
arXiv Detail & Related papers (2024-04-01T22:44:02Z) - Two-photon quantum state tomography of photonic qubits [0.0]
We provide a tool for measuring the Stokes parameters and the degree of polarization of single photons by employing second order interference.
It is shown that the technique is able to distinguish a partially polarized photon where the polarization state is coupled to an internal degree of freedom.
arXiv Detail & Related papers (2023-10-26T14:14:03Z) - Generating arbitrary non-separable states with polarization and orbital
angular momentum of light [4.9797021649273985]
We generate arbitrary non-separable states of light using polarization and orbital angular momentum (OAM) degrees of freedom.
We observe the intensity distribution corresponding to OAM modes of the light beam by projecting the non-separable state into different polarization states.
This classical non-separability can be easily transferred to the quantum domain.
arXiv Detail & Related papers (2023-07-12T09:45:36Z) - Tailoring photon statistics with an atom-based two-photon interferometer [0.0]
We actively control the quantum phase between the transmitted and incoherently scattered two-photon component.
We observe interference fringes in the normalized photon coincidence rate, varying from antibunching to bunching.
Our results lend themselves to the development of novel quantum light sources.
arXiv Detail & Related papers (2022-12-19T16:24:54Z) - Entanglement of annihilation photons [141.5628276096321]
We present the results of a new experimental study of the quantum entanglement of photon pairs produced in positron-electron annihilation at rest.
Despite numerous measurements, there is still no experimental proof of the entanglement of photons.
arXiv Detail & Related papers (2022-10-14T08:21:55Z) - Two-photon resonance fluorescence of two interacting non-identical
quantum emitters [77.34726150561087]
We study a system of two interacting, non-indentical quantum emitters driven by a coherent field.
We show that the features imprinted by the two-photon dynamics into the spectrum of resonance fluorescence are particularly sensitive to changes in the distance between emitters.
This can be exploited for applications such as superresolution imaging of point-like sources.
arXiv Detail & Related papers (2021-06-04T16:13:01Z) - Observation-dependent suppression and enhancement of two-photon
coincidences by tailored losses [68.8204255655161]
Hong-Ou-Mandel (HOM) effect can lead to a perfect suppression of two-particle coincidences between the output ports of a balanced beam splitter.
In this work, we demonstrate experimentally that the two-particle coincidence statistics of two bosons can instead be seamlessly tuned to substantial enhancement.
Our findings reveal a new approach to harnessing non-Hermitian settings for the manipulation of multi-particle quantum states.
arXiv Detail & Related papers (2021-05-12T06:47:35Z) - Investigating the coherent state detection probability of InGaAs/InP
SPAD-based single-photon detectors [55.41644538483948]
We investigate the probabilities of detecting single- and multi-photon coherent states on InGaAs/InP sine-gated and free-run avalanche diodes.
We conclude that multi-photon state detection cannot be regarded as independent events of absorption of individual single-photon states.
arXiv Detail & Related papers (2021-04-16T08:08:48Z) - Hyperentanglement in structured quantum light [50.591267188664666]
Entanglement in high-dimensional quantum systems, where one or more degrees of freedom of light are involved, offers increased information capacities and enables new quantum protocols.
Here, we demonstrate a functional source of high-dimensional, noise-resilient hyperentangled states encoded in time-frequency and vector-vortex structured modes.
We generate highly entangled photon pairs at telecom wavelength that we characterise via two-photon interference and quantum state tomography, achieving near-unity visibilities and fidelities.
arXiv Detail & Related papers (2020-06-02T18:00:04Z) - Quantum-Clustered Two-Photon Walks [68.8204255655161]
We demonstrate a previously unknown two-photon effect in a discrete-time quantum walk.
Two identical bosons with no mutual interactions can remain clustered together.
The two photons move in the same direction at each step due to a two-photon quantum interference phenomenon.
arXiv Detail & Related papers (2020-03-12T17:02:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.