論文の概要: Transformers to Fight the COVID-19 Infodemic
- arxiv url: http://arxiv.org/abs/2104.12201v1
- Date: Sun, 25 Apr 2021 16:49:23 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-28 05:32:43.378941
- Title: Transformers to Fight the COVID-19 Infodemic
- Title(参考訳): 新型コロナウイルスのインフォデミックと戦うトランスフォーマー
- Authors: Lasitha Uyangodage, Tharindu Ranasinghe, Hansi Hettiarachchi
- Abstract要約: ソーシャルメディア上の偽情報の大量拡散は、特に新型コロナウイルス(COVID-19)のような世界的なパンデミックの状況において、世界的なリスクとなっている。
本稿では,変圧器を用いたタスク目的への取り組みについて述べる。
このアプローチは、アラビア語で0.707平均f1得点、ブルガリア語で0.578平均f1得点、英語で0.864平均f1得点を達成する。
- 参考スコア(独自算出の注目度): 0.7519872646378835
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The massive spread of false information on social media has become a global
risk especially in a global pandemic situation like COVID-19. False information
detection has thus become a surging research topic in recent months.
NLP4IF-2021 shared task on fighting the COVID-19 infodemic has been organised
to strengthen the research in false information detection where the
participants are asked to predict seven different binary labels regarding false
information in a tweet. The shared task has been organised in three languages;
Arabic, Bulgarian and English. In this paper, we present our approach to tackle
the task objective using transformers. Overall, our approach achieves a 0.707
mean F1 score in Arabic, 0.578 mean F1 score in Bulgarian and 0.864 mean F1
score in English ranking 4th place in all the languages.
- Abstract(参考訳): ソーシャルメディア上の偽情報の大量拡散は、特に新型コロナウイルス(COVID-19)のような世界的なパンデミックの状況において、世界的なリスクとなっている。
偽情報検出はここ数カ月で増加傾向にある研究トピックとなっている。
NLP4IF-2021は、偽情報検出における研究を強化するために、ツイート中の偽情報に関する7つの異なるバイナリラベルの予測を参加者に依頼するタスクを編成した。
共有タスクはアラビア語、ブルガリア語、英語の3つの言語で構成されている。
本稿では,変圧器を用いたタスク目的への取り組みについて述べる。
全体として,アラビア語では0.707 平均 f1 得点,ブルガリア語では0.578 平均 f1 得点,英語では0.864 平均 f1 得点を達成している。
関連論文リスト
- ThangDLU at #SMM4H 2024: Encoder-decoder models for classifying text data on social disorders in children and adolescents [49.00494558898933]
本稿では,#SMM4H (Social Media Mining for Health) 2024 Workshopのタスク3とタスク5への参加について述べる。
タスク3は、屋外環境が社会不安の症状に与える影響を議論するツイートを中心にした多クラス分類タスクである。
タスク5は、子供の医学的障害を報告しているツイートに焦点を当てたバイナリ分類タスクを含む。
BART-baseやT5-smallのような事前訓練されたエンコーダデコーダモデルからの転送学習を適用し、与えられたツイートの集合のラベルを同定した。
論文 参考訳(メタデータ) (2024-04-30T17:06:20Z) - Overview of Abusive and Threatening Language Detection in Urdu at FIRE
2021 [50.591267188664666]
我々は、ウルドゥー語に対する虐待と脅しの2つの共通タスクを提示する。
本研究では, (i) 乱用と非乱用というラベル付きツイートを含む手動注釈付きデータセットと, (ii) 脅威と非脅威の2つを提示する。
両方のサブタスクに対して、m-Bertベースのトランスモデルは最高の性能を示した。
論文 参考訳(メタデータ) (2022-07-14T07:38:13Z) - UrduFake@FIRE2021: Shared Track on Fake News Identification in Urdu [55.41644538483948]
本研究は、ウルドゥー語で偽ニュースを検出するために、UrduFake@FIRE2021と名付けられた2番目の共有タスクを報告した。
提案システムは、様々なカウントベースの特徴に基づいており、異なる分類器とニューラルネットワークアーキテクチャを使用していた。
勾配降下(SGD)アルゴリズムは他の分類器よりも優れ、0.679Fスコアを達成した。
論文 参考訳(メタデータ) (2022-07-11T19:15:04Z) - Overview of the Shared Task on Fake News Detection in Urdu at FIRE 2021 [55.41644538483948]
共有タスクの目標は、コミュニティにこの重要な問題を解決するための効率的な方法を考え出すことを動機付けることです。
トレーニングセットには1300件の注釈付きニュース記事、750件のリアルニュース、550件のフェイクニュース、300件のニュース記事、200件のリアルニュース、100件のフェイクニュースが含まれている。
F1-macroスコアは0.679で、これは過去最高の0.907 F1-macroよりも低かった。
論文 参考訳(メタデータ) (2022-07-11T18:58:36Z) - Cross-lingual COVID-19 Fake News Detection [54.125563009333995]
低リソース言語(中国語)における新型コロナウイルスの誤報を検出するための最初の試みは、高リソース言語(英語)における事実チェックされたニュースのみを用いて行われる。
そこで我々は、クロスランガルなニュースボディテキストを共同でエンコードし、ニュースコンテンツをキャプチャするCrossFakeというディープラーニングフレームワークを提案する。
実験結果から,クロスランガル環境下でのCrossFakeの有効性が示された。
論文 参考訳(メタデータ) (2021-10-13T04:44:02Z) - Findings of the NLP4IF-2021 Shared Tasks on Fighting the COVID-19
Infodemic and Censorship Detection [23.280506220186425]
NLP4IF-2021共有タスクの結果を示す。
10チームがタスク1にシステムを提出し、1チームがタスク2に参加した。
最高のシステムは、事前訓練されたトランスフォーマーとアンサンブルを使用する。
論文 参考訳(メタデータ) (2021-09-23T06:38:03Z) - Model Generalization on COVID-19 Fake News Detection [41.03093888315081]
CONSTRAINT 2021(FakeNews-19)で提案された偽ニュース検出タスクの堅牢なモデルの実現を目指す。
新型コロナの偽ニュースの2つのテストセットでモデルを評価します。
論文 参考訳(メタデータ) (2021-01-11T12:23:41Z) - Transformer based Automatic COVID-19 Fake News Detection System [9.23545668304066]
新型コロナウイルス(COVID-19)のパンデミックでは、誤報が特に多い。
新型コロナウイルスのパンデミックに関するソーシャルメディア上で共有される情報の信頼性を分析する手法を報告する。
テストセットでは0.9855 f1スコアを獲得し,160チーム中5位にランクインした。
論文 参考訳(メタデータ) (2021-01-01T06:49:27Z) - Not-NUTs at W-NUT 2020 Task 2: A BERT-based System in Identifying
Informative COVID-19 English Tweets [0.0]
本稿では、英語のつぶやきを前提として、そのツイートがCOVID-19に関する情報的内容を持つかどうかを自動的に識別するモデルを提案する。
インフォメーションクラスにおけるF1スコアの約1%は、トップパフォーマンスチームによる結果にしか影響しない競争的な結果を達成しました。
論文 参考訳(メタデータ) (2020-09-14T15:49:16Z) - TICO-19: the Translation Initiative for Covid-19 [112.5601530395345]
COvid-19の翻訳イニシアチブ(TICO-19)は、テストおよび開発データを、35の異なる言語でAIおよびMT研究者に提供した。
同じデータが表現されているすべての言語に変換されるため、テストや開発は、セット内の任意の言語のペアリングに対して行うことができる。
論文 参考訳(メタデータ) (2020-07-03T16:26:17Z) - Fighting the COVID-19 Infodemic: Modeling the Perspective of
Journalists, Fact-Checkers, Social Media Platforms, Policy Makers, and the
Society [37.9389191670008]
新型コロナウイルスは世界保健機関(WHO)にとって最も重要な分野の一つだと宣言されている。
このインフォデミックと戦うことは、世界保健機関(WHO)の最も重要な焦点の1つと宣言されている。
詳細な偽情報分析のために,手動で注釈付きツイート16Kの大規模なデータセットをリリースする。
論文 参考訳(メタデータ) (2020-04-30T18:04:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。