Accuracy Improvement for Fully Convolutional Networks via Selective
Augmentation with Applications to Electrocardiogram Data
- URL: http://arxiv.org/abs/2104.12284v1
- Date: Sun, 25 Apr 2021 23:01:27 GMT
- Title: Accuracy Improvement for Fully Convolutional Networks via Selective
Augmentation with Applications to Electrocardiogram Data
- Authors: Lucas Cassiel Jacaruso
- Abstract summary: The accuracy of the proposed approach was optimal near a defined upper threshold for qualifying low confidence samples and decreased as this threshold was raised to include higher confidence samples.
This suggests exclusively selecting lower confidence samples for data augmentation comes with distinct benefits for electrocardiogram data classification with Fully Convolutional Networks.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deep learning methods have shown suitability for time series classification
in the health and medical domain, with promising results for electrocardiogram
data classification. Successful identification of myocardial infarction holds
life saving potential and any meaningful improvement upon deep learning models
in this area is of great interest. Conventionally, data augmentation methods
are applied universally to the training set when data are limited in order to
ameliorate data resolution or sample size. In the method proposed in this
study, data augmentation was not applied in the context of data scarcity.
Instead, samples that yield low confidence predictions were selectively
augmented in order to bolster the model's sensitivity to features or patterns
less strongly associated with a given class. This approach was tested for
improving the performance of a Fully Convolutional Network. The proposed
approach achieved 90 percent accuracy for classifying myocardial infarction as
opposed to 82 percent accuracy for the baseline, a marked improvement. Further,
the accuracy of the proposed approach was optimal near a defined upper
threshold for qualifying low confidence samples and decreased as this threshold
was raised to include higher confidence samples. This suggests exclusively
selecting lower confidence samples for data augmentation comes with distinct
benefits for electrocardiogram data classification with Fully Convolutional
Networks.
Related papers
- Predictive Accuracy-Based Active Learning for Medical Image Segmentation [5.25147264940975]
We propose an efficient Predictive Accuracy-based Active Learning (PAAL) method for medical image segmentation.
PAAL consists of an Accuracy Predictor (AP) and a Weighted Polling Strategy (WPS)
Experiment results on multiple datasets demonstrate the superiority of PAAL.
arXiv Detail & Related papers (2024-05-01T11:12:08Z) - Which Augmentation Should I Use? An Empirical Investigation of Augmentations for Self-Supervised Phonocardiogram Representation Learning [5.438725298163702]
Contrastive Self-Supervised Learning (SSL) offers a potential solution to labeled data scarcity.
We propose uncovering the optimal augmentations for applying contrastive learning in 1D phonocardiogram (PCG) classification.
We demonstrate that depending on its training distribution, the effectiveness of a fully-supervised model can degrade up to 32%, while SSL models only lose up to 10% or even improve in some cases.
arXiv Detail & Related papers (2023-12-01T11:06:00Z) - Adaptive Dimension Reduction and Variational Inference for Transductive
Few-Shot Classification [2.922007656878633]
We propose a new clustering method based on Variational Bayesian inference, further improved by Adaptive Dimension Reduction.
Our proposed method significantly improves accuracy in the realistic unbalanced transductive setting on various Few-Shot benchmarks.
arXiv Detail & Related papers (2022-09-18T10:29:02Z) - Sample-dependent Adaptive Temperature Scaling for Improved Calibration [95.7477042886242]
Post-hoc approach to compensate for neural networks being wrong is to perform temperature scaling.
We propose to predict a different temperature value for each input, allowing us to adjust the mismatch between confidence and accuracy.
We test our method on the ResNet50 and WideResNet28-10 architectures using the CIFAR10/100 and Tiny-ImageNet datasets.
arXiv Detail & Related papers (2022-07-13T14:13:49Z) - Conditional Generative Data Augmentation for Clinical Audio Datasets [36.45569352490318]
We propose a novel data augmentation method for clinical audio datasets based on a conditional Wasserstein Generative Adversarial Network with Gradient Penalty.
To validate our method, we created a clinical audio dataset which was recorded in a real-world operating room during Total Hipplasty (THA) procedures.
We show that training with the generated augmented samples outperforms classical audio augmentation methods in terms of classification accuracy.
arXiv Detail & Related papers (2022-03-22T09:47:31Z) - SelectAugment: Hierarchical Deterministic Sample Selection for Data
Augmentation [72.58308581812149]
We propose an effective approach, dubbed SelectAugment, to select samples to be augmented in a deterministic and online manner.
Specifically, in each batch, we first determine the augmentation ratio, and then decide whether to augment each training sample under this ratio.
In this way, the negative effects of the randomness in selecting samples to augment can be effectively alleviated and the effectiveness of DA is improved.
arXiv Detail & Related papers (2021-12-06T08:38:38Z) - Towards Reducing Labeling Cost in Deep Object Detection [61.010693873330446]
We propose a unified framework for active learning, that considers both the uncertainty and the robustness of the detector.
Our method is able to pseudo-label the very confident predictions, suppressing a potential distribution drift.
arXiv Detail & Related papers (2021-06-22T16:53:09Z) - Scalable Marginal Likelihood Estimation for Model Selection in Deep
Learning [78.83598532168256]
Marginal-likelihood based model-selection is rarely used in deep learning due to estimation difficulties.
Our work shows that marginal likelihoods can improve generalization and be useful when validation data is unavailable.
arXiv Detail & Related papers (2021-04-11T09:50:24Z) - Bootstrapping Your Own Positive Sample: Contrastive Learning With
Electronic Health Record Data [62.29031007761901]
This paper proposes a novel contrastive regularized clinical classification model.
We introduce two unique positive sampling strategies specifically tailored for EHR data.
Our framework yields highly competitive experimental results in predicting the mortality risk on real-world COVID-19 EHR data.
arXiv Detail & Related papers (2021-04-07T06:02:04Z) - Self-paced Data Augmentation for Training Neural Networks [11.554821454921536]
We propose a self-paced augmentation to automatically select suitable samples for data augmentation when training a neural network.
The proposed method mitigates the deterioration of generalization performance caused by ineffective data augmentation.
Experimental results demonstrate that the proposed SPA can improve the generalization performance, particularly when the number of training samples is small.
arXiv Detail & Related papers (2020-10-29T09:13:18Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
We develop an approximate Bayesian inference scheme based on posterior regularisation.
We demonstrate the utility of our method in the context of transferring prognostic models of prostate cancer across globally diverse populations.
arXiv Detail & Related papers (2020-06-26T13:50:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.