Improving the accuracy of automated labeling of specimen images datasets via a confidence-based process
- URL: http://arxiv.org/abs/2411.10074v2
- Date: Fri, 22 Nov 2024 10:12:36 GMT
- Title: Improving the accuracy of automated labeling of specimen images datasets via a confidence-based process
- Authors: Quentin Bateux, Jonathan Koss, Patrick W. Sweeney, Erika Edwards, Nelson Rios, Aaron M. Dollar,
- Abstract summary: We present and validate an approach that can greatly improve automatic labeling accuracy.
We demonstrate that a naive model that produced 86% initial accuracy can achieve improved performance.
After validating the approach in a number of ways, we annotate a large dataset of over 600,000 herbarium specimens.
- Score: 9.0255922670433
- License:
- Abstract: The digitization of natural history collections over the past three decades has unlocked a treasure trove of specimen imagery and metadata. There is great interest in making this data more useful by further labeling it with additional trait data, and modern deep learning machine learning techniques utilizing convolutional neural nets (CNNs) and similar networks show particular promise to reduce the amount of required manual labeling by human experts, making the process much faster and less expensive. However, in most cases, the accuracy of these approaches is too low for reliable utilization of the automatic labeling, typically in the range of 80-85% accuracy. In this paper, we present and validate an approach that can greatly improve this accuracy, essentially by examining the confidence that the network has in the generated label as well as utilizing a user-defined threshold to reject labels that fall below a chosen level. We demonstrate that a naive model that produced 86% initial accuracy can achieve improved performance - over 95% accuracy (rejecting about 40% of the labels) or over 99% accuracy (rejecting about 65%) by selecting higher confidence thresholds. This gives flexibility to adapt existing models to the statistical requirements of various types of research and has the potential to move these automatic labeling approaches from being unusably inaccurate to being an invaluable new tool. After validating the approach in a number of ways, we annotate the reproductive state of a large dataset of over 600,000 herbarium specimens. The analysis of the results points at under-investigated correlations as well as general alignment with known trends. By sharing this new dataset alongside this work, we want to allow ecologists to gather insights for their own research questions, at their chosen point of accuracy/coverage trade-off.
Related papers
- ASPEST: Bridging the Gap Between Active Learning and Selective
Prediction [56.001808843574395]
Selective prediction aims to learn a reliable model that abstains from making predictions when uncertain.
Active learning aims to lower the overall labeling effort, and hence human dependence, by querying the most informative examples.
In this work, we introduce a new learning paradigm, active selective prediction, which aims to query more informative samples from the shifted target domain.
arXiv Detail & Related papers (2023-04-07T23:51:07Z) - Efficient Testing of Deep Neural Networks via Decision Boundary Analysis [28.868479656437145]
We propose a novel technique, named Aries, that can estimate the performance of DNNs on new unlabeled data.
The estimated accuracy by Aries is only 0.03% -- 2.60% (on average 0.61%) off the true accuracy.
arXiv Detail & Related papers (2022-07-22T08:39:10Z) - Going Beyond One-Hot Encoding in Classification: Can Human Uncertainty
Improve Model Performance? [14.610038284393166]
We show that label uncertainty is explicitly embedded into the training process via distributional labels.
The incorporation of label uncertainty helps the model to generalize better to unseen data and increases model performance.
Similar to existing calibration methods, the distributional labels lead to better-calibrated probabilities, which in turn yield more certain and trustworthy predictions.
arXiv Detail & Related papers (2022-05-30T17:19:11Z) - Labeling-Free Comparison Testing of Deep Learning Models [28.47632100019289]
We propose a labeling-free comparison testing approach to overcome the limitations of labeling effort and sampling randomness.
Our approach outperforms the baseline methods by up to 0.74 and 0.53 on Spearman's correlation and Kendall's $tau$, regardless of the dataset and distribution shift.
arXiv Detail & Related papers (2022-04-08T10:55:45Z) - Leveraging Unlabeled Data to Predict Out-of-Distribution Performance [63.740181251997306]
Real-world machine learning deployments are characterized by mismatches between the source (training) and target (test) distributions.
In this work, we investigate methods for predicting the target domain accuracy using only labeled source data and unlabeled target data.
We propose Average Thresholded Confidence (ATC), a practical method that learns a threshold on the model's confidence, predicting accuracy as the fraction of unlabeled examples.
arXiv Detail & Related papers (2022-01-11T23:01:12Z) - Towards Reducing Labeling Cost in Deep Object Detection [61.010693873330446]
We propose a unified framework for active learning, that considers both the uncertainty and the robustness of the detector.
Our method is able to pseudo-label the very confident predictions, suppressing a potential distribution drift.
arXiv Detail & Related papers (2021-06-22T16:53:09Z) - Accuracy Improvement for Fully Convolutional Networks via Selective
Augmentation with Applications to Electrocardiogram Data [0.0]
The accuracy of the proposed approach was optimal near a defined upper threshold for qualifying low confidence samples and decreased as this threshold was raised to include higher confidence samples.
This suggests exclusively selecting lower confidence samples for data augmentation comes with distinct benefits for electrocardiogram data classification with Fully Convolutional Networks.
arXiv Detail & Related papers (2021-04-25T23:01:27Z) - Improving Uncertainty Calibration via Prior Augmented Data [56.88185136509654]
Neural networks have proven successful at learning from complex data distributions by acting as universal function approximators.
They are often overconfident in their predictions, which leads to inaccurate and miscalibrated probabilistic predictions.
We propose a solution by seeking out regions of feature space where the model is unjustifiably overconfident, and conditionally raising the entropy of those predictions towards that of the prior distribution of the labels.
arXiv Detail & Related papers (2021-02-22T07:02:37Z) - Uncertainty-aware Self-training for Text Classification with Few Labels [54.13279574908808]
We study self-training as one of the earliest semi-supervised learning approaches to reduce the annotation bottleneck.
We propose an approach to improve self-training by incorporating uncertainty estimates of the underlying neural network.
We show our methods leveraging only 20-30 labeled samples per class for each task for training and for validation can perform within 3% of fully supervised pre-trained language models.
arXiv Detail & Related papers (2020-06-27T08:13:58Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
We develop an approximate Bayesian inference scheme based on posterior regularisation.
We demonstrate the utility of our method in the context of transferring prognostic models of prostate cancer across globally diverse populations.
arXiv Detail & Related papers (2020-06-26T13:50:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.