論文の概要: Variational Pedestrian Detection
- arxiv url: http://arxiv.org/abs/2104.12389v1
- Date: Mon, 26 Apr 2021 08:06:41 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-27 23:59:29.660049
- Title: Variational Pedestrian Detection
- Title(参考訳): 変分歩行者検出
- Authors: Yuang Zhang, Huanyu He, Jianguo Li, Yuxi Li, John See, Weiyao Lin
- Abstract要約: 変動推定問題として,歩行者検出の特異な視点を定めている。
密集した提案を潜在変数としてモデル化し,歩行者検出のための新規かつ効率的なアルゴリズムを考案する。
また, この手法は2段階検出器に柔軟に適用でき, 顕著な性能向上を実現する。
- 参考スコア(独自算出の注目度): 33.52588723666144
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Pedestrian detection in a crowd is a challenging task due to a high number of
mutually-occluding human instances, which brings ambiguity and optimization
difficulties to the current IoU-based ground truth assignment procedure in
classical object detection methods. In this paper, we develop a unique
perspective of pedestrian detection as a variational inference problem. We
formulate a novel and efficient algorithm for pedestrian detection by modeling
the dense proposals as a latent variable while proposing a customized Auto
Encoding Variational Bayes (AEVB) algorithm. Through the optimization of our
proposed algorithm, a classical detector can be fashioned into a variational
pedestrian detector. Experiments conducted on CrowdHuman and CityPersons
datasets show that the proposed algorithm serves as an efficient solution to
handle the dense pedestrian detection problem for the case of single-stage
detectors. Our method can also be flexibly applied to two-stage detectors,
achieving notable performance enhancement.
- Abstract(参考訳): 古典的物体検出法では,現在IoUをベースとした地上真理割当手順において曖昧さと最適化の難しさが生じるため,群集における歩行者検出は困難である。
本稿では,変動推定問題として歩行者検出のユニークな視点を考案する。
本稿では,自動符号化変分ベイズ(aevb)アルゴリズムを提案しながら,濃密な提案を潜在変数としてモデル化し,歩行者検出のための新規かつ効率的なアルゴリズムを提案する。
提案アルゴリズムの最適化により、古典的検出器を可変型歩行者検出器にすることができる。
CrowdHumanとCityPersonsのデータセットを用いて行った実験により、提案アルゴリズムは、単一ステージ検出器の場合の密度の高い歩行者検出問題に対処するための効率的な解であることが示された。
また, この手法は2段階検出器に柔軟に適用でき, 顕著な性能向上を実現する。
関連論文リスト
- A PST Algorithm for FPs Suppression in Two-stage CNN Detection Methods [2.288618928064061]
本稿では,歩行者と歩行者以外のサンプルを識別する2段階CNN検出手法の学習を支援するために,歩行者に敏感な学習アルゴリズムを提案する。
提案アルゴリズムの助けを借りて,より小型で高精度なメトロ旅客検出器であるMetroNextの検出精度がさらに向上した。
論文 参考訳(メタデータ) (2024-05-24T08:26:14Z) - Bagged Regularized $k$-Distances for Anomaly Detection [9.899763598214122]
BRDAD (Bagged regularized $k$-distances for Anomaly Detection) と呼ばれる距離に基づく新しいアルゴリズムを提案する。
我々のBRDADアルゴリズムは、重み付けされた密度推定のための$k$-distances(BWDDE)の実証的リスクの有限標本境界を最小化して重みを選択する。
理論的には,我々のアルゴリズムに対するAUCの高速収束率を確立し,バッグング手法が計算複雑性を著しく減少させることを示す。
論文 参考訳(メタデータ) (2023-12-02T07:00:46Z) - PSDiff: Diffusion Model for Person Search with Iterative and
Collaborative Refinement [59.6260680005195]
本稿では,拡散モデルであるPSDiffに基づく新しいPerson Searchフレームワークを提案する。
PSDiffは、ノイズの多いボックスとReID埋め込みから地上の真実へのデュアルデノケーションプロセスとして検索する人を定式化する。
新しいパラダイムに従って、我々は、反復的かつ協調的な方法で検出とReIDサブタスクを最適化する新しいコラボレーティブ・デノナイジング・レイヤ(CDL)を設計する。
論文 参考訳(メタデータ) (2023-09-20T08:16:39Z) - Machine Learning for Online Algorithm Selection under Censored Feedback [71.6879432974126]
オンラインアルゴリズム選択(OAS)では、アルゴリズム問題クラスのインスタンスがエージェントに次々に提示され、エージェントは、固定された候補アルゴリズムセットから、おそらく最高のアルゴリズムを迅速に選択する必要がある。
SAT(Satisfiability)のような決定問題に対して、品質は一般的にアルゴリズムのランタイムを指す。
本研究では,OASのマルチアームバンディットアルゴリズムを再検討し,この問題に対処する能力について議論する。
ランタイム指向の損失に適応し、時間的地平線に依存しない空間的・時間的複雑さを維持しながら、部分的に検閲されたデータを可能にする。
論文 参考訳(メタデータ) (2021-09-13T18:10:52Z) - Unsupervised Anomaly Detectors to Detect Intrusions in the Current
Threat Landscape [0.11470070927586014]
本研究では,Isolation Forests,One-Class Support Vector Machines,Self-Organizing Mapsが侵入検知用よりも有効であることを示した。
不安定、分散、あるいは非可逆的行動による攻撃を、ファジング、ワーム、ボットネットなどによって検出することがより困難である点を詳述する。
論文 参考訳(メタデータ) (2020-12-21T14:06:58Z) - ESAD: End-to-end Deep Semi-supervised Anomaly Detection [85.81138474858197]
正規データと異常データの間のKL偏差を計測する新たな目的関数を提案する。
提案手法は,複数のベンチマークデータセットの最先端性能を著しく上回っている。
論文 参考訳(メタデータ) (2020-12-09T08:16:35Z) - AmphibianDetector: adaptive computation for moving objects detection [0.913755431537592]
本稿では,偽陽性検出の回数を減らすためのオブジェクト検出手法を提案する。
提案手法は、すでにオブジェクト検出タスクのために訓練されているCNNの修正である。
提案手法の有効性をオープンデータセット"CDNet2014 pedestrian"で実証した。
論文 参考訳(メタデータ) (2020-11-15T12:37:44Z) - AP-Loss for Accurate One-Stage Object Detection [49.13608882885456]
一段階の物体検出器は、分類損失と局所化損失を同時に最適化することによって訓練される。
前者は、多数のアンカーのため、非常に前景と後方のアンカーの不均衡に悩まされる。
本稿では,一段検知器の分類タスクをランキングタスクに置き換える新しい枠組みを提案する。
論文 参考訳(メタデータ) (2020-08-17T13:22:01Z) - SADet: Learning An Efficient and Accurate Pedestrian Detector [68.66857832440897]
本稿では,一段検出器の検出パイプラインに対する一連の最適化手法を提案する。
効率的な歩行者検出のための単発アンカーベース検出器(SADet)を形成する。
構造的には単純だが、VGA解像度の画像に対して最先端の結果と20ドルFPSのリアルタイム速度を示す。
論文 参考訳(メタデータ) (2020-07-26T12:32:38Z) - Quickest Intruder Detection for Multiple User Active Authentication [74.5256211285431]
我々は,Multiple-user Quickest Intruder Detection (MQID)アルゴリズムを定式化する。
より少ない観測サンプルで侵入者検出を行うデータ効率のシナリオにアルゴリズムを拡張した。
顔のモダリティに基づく2つのAAデータセットに対する提案手法の有効性を評価した。
論文 参考訳(メタデータ) (2020-06-21T21:59:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。