論文の概要: Certifiably Polynomial Algorithm for Best Group Subset Selection
- arxiv url: http://arxiv.org/abs/2104.12576v1
- Date: Fri, 23 Apr 2021 03:05:11 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-27 14:56:53.396671
- Title: Certifiably Polynomial Algorithm for Best Group Subset Selection
- Title(参考訳): 最良群サブセット選択のための多項アルゴリズム
- Authors: Yanhang Zhang, Junxian Zhu, Jin Zhu, Xueqin Wang
- Abstract要約: ベストグループサブセットの選択は、応答変数の最良の解釈可能性を達成するために重複しないグループの小さな部分を選択することを目的としている。
有効群を反復的に検出し,無力群を除外するグループスプライシングアルゴリズムを提案する。
提案手法の効率と精度を,合成データセットと実世界のデータセットを比較して検証する。
- 参考スコア(独自算出の注目度): 0.9667631210393929
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Best group subset selection aims to choose a small part of non-overlapping
groups to achieve the best interpretability on the response variable. It is
practically attractive for group variable selection; however, due to the
computational intractability in high dimensionality setting, it doesn't catch
enough attention. To fill the blank of efficient algorithms for best group
subset selection, in this paper, we propose a group-splicing algorithm that
iteratively detects effective groups and excludes the helpless ones. Moreover,
coupled with a novel Bayesian group information criterion, an adaptive
algorithm is developed to determine the true group subset size. It is
certifiable that our algorithms enable identifying the optimal group subset in
polynomial time under mild conditions. We demonstrate the efficiency and
accuracy of our proposal by comparing state-of-the-art algorithms on both
synthetic and real-world datasets.
- Abstract(参考訳): ベストグループサブセットの選択は、応答変数の最良の解釈可能性を達成するために重複しないグループの小さな部分を選択することを目的としている。
群変数選択には事実上魅力的であるが、高次元設定における計算的難易度のため、十分な注意を引けない。
本稿では,最良群選択のための効率的なアルゴリズムの空白を埋めるために,有効群を反復的に検出し,無力群を除外するグループスプライシングアルゴリズムを提案する。
さらに,新しいベイズ群情報基準と組み合わせて,真のグループサブセットサイズを決定する適応アルゴリズムを開発した。
このアルゴリズムが多項式時間における最適群部分集合を軽度条件下で同定できることが証明された。
提案手法の効率と精度を,合成データセットと実世界のデータセットを比較して検証する。
関連論文リスト
- Training Greedy Policy for Proposal Batch Selection in Expensive Multi-Objective Combinatorial Optimization [52.80408805368928]
本稿では,バッチ取得のための新しいグリーディ型サブセット選択アルゴリズムを提案する。
赤蛍光タンパク質に関する実験により,提案手法は1.69倍少ないクエリでベースライン性能を達成できることが判明した。
論文 参考訳(メタデータ) (2024-06-21T05:57:08Z) - Concomitant Group Testing [49.50984893039441]
肯定的なテストが複数種類の項目の組み合わせを必要とするという考え方を捉えたグループテストの問題のバリエーションを紹介した。
目標は、可能な限り少数のテストを使用して、半欠陥セットをすべて確実に識別することである。
我々のアルゴリズムは、(i)決定性(ゼロエラー)かランダム化(小エラー)か、(ii)非適応性(非適応性)、完全適応性(完全適応性)、あるいは限定適応性(限定適応性)かによって区別される。
論文 参考訳(メタデータ) (2023-09-08T09:11:12Z) - Max-Min Diversification with Fairness Constraints: Exact and
Approximation Algorithms [17.57585822765145]
本稿では,小データセットに適した正確なアルゴリズムと,大データセットにスケールする任意の$varepsilon in (0, 1)$に対して$frac1-varepsilon integer 5$-approximationアルゴリズムを提案する。
実世界のデータセットに対する実験は、提案アルゴリズムが既存のデータセットよりも優れていることを示す。
論文 参考訳(メタデータ) (2023-01-05T13:02:35Z) - Exclusive Group Lasso for Structured Variable Selection [10.86544864007391]
構造化変数選択問題を考える。
合成ノルムは、そのような排他的グループ空間パターンを促進するために適切に設計することができる。
構造原子を推定された支持体に含めて解を構築する能動集合アルゴリズムが提案されている。
論文 参考訳(メタデータ) (2021-08-23T16:55:13Z) - Clustering-Based Subset Selection in Evolutionary Multiobjective
Optimization [11.110675371854988]
サブセット選択は進化的多目的最適化(EMO)アルゴリズムにおいて重要な要素である。
クラスタリングに基づく手法は、EMOアルゴリズムによって得られた解集合からの部分集合選択の文脈では評価されていない。
論文 参考訳(メタデータ) (2021-08-19T02:56:41Z) - Local policy search with Bayesian optimization [73.0364959221845]
強化学習は、環境との相互作用によって最適な政策を見つけることを目的としている。
局所探索のための政策勾配は、しばしばランダムな摂動から得られる。
目的関数の確率モデルとその勾配を用いたアルゴリズムを開発する。
論文 参考訳(メタデータ) (2021-06-22T16:07:02Z) - Fast Greedy Subset Selection from Large Candidate Solution Sets in
Evolutionary Multi-objective Optimization [11.110675371854988]
本稿では,超体積,IGD,IGD+インジケータのグリーディ部分選択の効率について論じる。
我々の考えは、超体積インジケータで知られている部分モジュラー特性を用いて、それらの効率を改善することである。
論文 参考訳(メタデータ) (2021-02-01T16:14:15Z) - Multi-View Spectral Clustering with High-Order Optimal Neighborhood
Laplacian Matrix [57.11971786407279]
マルチビュースペクトルクラスタリングは、データ間の固有のクラスタ構造を効果的に明らかにすることができる。
本稿では,高次最適近傍ラプラシア行列を学習するマルチビュースペクトルクラスタリングアルゴリズムを提案する。
提案アルゴリズムは, 1次ベースと高次ベースの両方の線形結合の近傍を探索し, 最適ラプラシア行列を生成する。
論文 参考訳(メタデータ) (2020-08-31T12:28:40Z) - Extreme Algorithm Selection With Dyadic Feature Representation [78.13985819417974]
我々は,数千の候補アルゴリズムの固定セットを考慮に入れた,極端なアルゴリズム選択(XAS)の設定を提案する。
我々は、XAS設定に対する最先端のAS技術の適用性を評価し、Dyadic特徴表現を利用したアプローチを提案する。
論文 参考訳(メタデータ) (2020-01-29T09:40:58Z) - Optimal Clustering from Noisy Binary Feedback [75.17453757892152]
本稿では,二元的ユーザフィードバックから一組のアイテムをクラスタリングする問題について検討する。
最小クラスタ回復誤差率のアルゴリズムを考案する。
適応選択のために,情報理論的誤差下界の導出にインスパイアされたアルゴリズムを開発する。
論文 参考訳(メタデータ) (2019-10-14T09:18:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。