論文の概要: Graph Neural Networks for Traffic Forecasting
- arxiv url: http://arxiv.org/abs/2104.13096v1
- Date: Tue, 27 Apr 2021 10:39:00 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-28 13:38:11.274803
- Title: Graph Neural Networks for Traffic Forecasting
- Title(参考訳): 交通予測のためのグラフニューラルネットワーク
- Authors: Jo\~ao Rico, Jos\'e Barateiro, Arlindo Oliveira
- Abstract要約: 本稿では,交通予測の課題に着目し,この問題に対するグラフニューラルネットワーク(GNN)の最近の開発と応用について概観する。
GNNは、入力を直接グラフデータとして処理する深層学習手法のクラスである。
これにより、トラフィックデータの空間的依存関係をより直接的に活用し、ディープラーニングの利点を利用して最先端の結果が得られます。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The significant increase in world population and urbanisation has brought
several important challenges, in particular regarding the sustainability,
maintenance and planning of urban mobility. At the same time, the exponential
increase of computing capability and of available sensor and location data have
offered the potential for innovative solutions to these challenges. In this
work, we focus on the challenge of traffic forecasting and review the recent
development and application of graph neural networks (GNN) to this problem.
GNNs are a class of deep learning methods that directly process the input as
graph data. This leverages more directly the spatial dependencies of traffic
data and makes use of the advantages of deep learning producing
state-of-the-art results. We introduce and review the emerging topic of GNNs,
including their most common variants, with a focus on its application to
traffic forecasting. We address the different ways of modelling traffic
forecasting as a (temporal) graph, the different approaches developed so far to
combine the graph and temporal learning components, as well as current
limitations and research opportunities.
- Abstract(参考訳): 世界人口と都市化の著しい増加は、特に都市移動の持続可能性、維持、計画に関していくつかの重要な課題をもたらした。
同時に、コンピューティング能力と利用可能なセンサーと位置情報の指数的な増加は、これらの課題に対する革新的な解決策の可能性を秘めている。
本研究では,この問題に対するグラフニューラルネットワーク(GNN)の最近の開発と応用について,交通予測の課題に焦点をあてる。
GNNは、入力を直接グラフデータとして処理する深層学習手法のクラスである。
これにより、トラフィックデータの空間的依存関係をより直接的に活用し、最先端の結果を生成するディープラーニングの利点を活用することができる。
我々は,gnnの最も一般的な変種を含む新しいトピックを紹介し,そのトラフィック予測への応用に焦点をあててレビューする。
トラヒック予測を(時間)グラフとしてモデル化する方法や,グラフと時間的学習コンポーネントを組み合わせたアプローチ,現在の制限や研究機会など,さまざまなアプローチについて論じる。
関連論文リスト
- Deep Learning-driven Mobile Traffic Measurement Collection and Analysis [0.43512163406552007]
本稿では,空間的・時間的領域において,深層学習(DL)技術の強力な階層的特徴学習能力を利用する。
そこで我々は,都市規模の交通分析と予測のためのソリューションを開発した。
論文 参考訳(メタデータ) (2024-10-14T06:53:45Z) - Gradient Transformation: Towards Efficient and Model-Agnostic Unlearning for Dynamic Graph Neural Networks [66.70786325911124]
グラフアンラーニングは、ユーザのプライバシ保護と、望ましくないデータによるネガティブな影響軽減に不可欠なツールとして登場した。
DGNNの普及に伴い、動的グラフアンラーニングの実装を検討することが不可欠となる。
DGNNアンラーニングを実装するために,効率的,効率的,モデルに依存しない,事後処理手法を提案する。
論文 参考訳(メタデータ) (2024-05-23T10:26:18Z) - FLEXIBLE: Forecasting Cellular Traffic by Leveraging Explicit Inductive Graph-Based Learning [1.4216957119562985]
本稿では,新しい帰納学習手法と一般化可能なGNNベースの予測モデルを導入する。
実験の結果、最先端と比較して9.8%の性能改善が見られた。
論文 参考訳(メタデータ) (2024-05-14T07:53:23Z) - DEGREE: Decomposition Based Explanation For Graph Neural Networks [55.38873296761104]
我々は,GNN予測に対する忠実な説明を提供するためにDGREEを提案する。
GNNの情報生成と集約機構を分解することにより、DECREEは入力グラフの特定のコンポーネントのコントリビューションを最終的な予測に追跡することができる。
また,従来の手法で見過ごされるグラフノード間の複雑な相互作用を明らかにするために,サブグラフレベルの解釈アルゴリズムを設計する。
論文 参考訳(メタデータ) (2023-05-22T10:29:52Z) - PDFormer: Propagation Delay-Aware Dynamic Long-Range Transformer for
Traffic Flow Prediction [78.05103666987655]
空間時空間グラフニューラルネットワーク(GNN)モデルは、この問題を解決する最も有望な方法の1つである。
本稿では,交通流の正確な予測を行うために,遅延を意識した動的長距離トランスフォーマー(PDFormer)を提案する。
提案手法は,最先端の性能を達成するだけでなく,計算効率の競争力も発揮できる。
論文 参考訳(メタデータ) (2023-01-19T08:42:40Z) - MentorGNN: Deriving Curriculum for Pre-Training GNNs [61.97574489259085]
本稿では,グラフ間のGNNの事前学習プロセスの監視を目的とした,MentorGNNというエンドツーエンドモデルを提案する。
我々は、事前学習したGNNの一般化誤差に自然かつ解釈可能な上限を導出することにより、関係データ(グラフ)に対するドメイン適応の問題に新たな光を当てた。
論文 参考訳(メタデータ) (2022-08-21T15:12:08Z) - NodeTrans: A Graph Transfer Learning Approach for Traffic Prediction [33.299309349152146]
少ないデータでトラフィック予測を解くために,新しいトランスファー学習手法を提案する。
まず、異なる道路ネットワークのノード固有の時空間トラフィックパターンをキャプチャできる時空間グラフニューラルネットワークを提案する。
論文 参考訳(メタデータ) (2022-07-04T10:06:20Z) - Few-Shot Traffic Prediction with Graph Networks using Locale as
Relational Inductive Biases [7.173242326298134]
多くの都市では、データ収集費用のため、利用可能なトラフィックデータの量は、最低限の要件以下である。
本稿では,グラフネットワーク(GN)に基づく深層学習モデルであるLocaleGnを開発した。
また、LocaleGnから学んだ知識が都市間で伝達可能であることも実証された。
論文 参考訳(メタデータ) (2022-03-08T09:46:50Z) - Data Augmentation for Deep Graph Learning: A Survey [66.04015540536027]
まず,グラフデータ拡張のための分類法を提案し,その拡張情報モダリティに基づいて関連研究を分類し,構造化されたレビューを提供する。
DGLにおける2つの課題(すなわち、最適グラフ学習と低リソースグラフ学習)に焦点を当て、グラフデータ拡張に基づく既存の学習パラダイムについて議論し、レビューする。
論文 参考訳(メタデータ) (2022-02-16T18:30:33Z) - Graph Neural Network for Traffic Forecasting: A Survey [1.1977931648859175]
本稿では,交通予測問題に対するグラフニューラルネットワークの適用を探求する,初めての総合的な調査である。
我々は,各問題と今後の研究方向性について,オープンデータとソースリソースのコレクションを提示する。
また、最新の論文、オープンデータ、およびソースリソースを更新するための公開Githubリポジトリも作成しました。
論文 参考訳(メタデータ) (2021-01-27T02:35:41Z) - Constructing Geographic and Long-term Temporal Graph for Traffic
Forecasting [88.5550074808201]
交通予測のための地理・長期時間グラフ畳み込み型ニューラルネットワーク(GLT-GCRNN)を提案する。
本研究では,地理的・長期的時間的パターンを共有する道路間のリッチな相互作用を学習する交通予測のための新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2020-04-23T03:50:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。