論文の概要: Deep Learning-driven Mobile Traffic Measurement Collection and Analysis
- arxiv url: http://arxiv.org/abs/2410.19777v1
- Date: Mon, 14 Oct 2024 06:53:45 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-03 08:19:45.957577
- Title: Deep Learning-driven Mobile Traffic Measurement Collection and Analysis
- Title(参考訳): 深層学習駆動型移動交通計測収集と解析
- Authors: Yini Fang,
- Abstract要約: 本稿では,空間的・時間的領域において,深層学習(DL)技術の強力な階層的特徴学習能力を利用する。
そこで我々は,都市規模の交通分析と予測のためのソリューションを開発した。
- 参考スコア(独自算出の注目度): 0.43512163406552007
- License:
- Abstract: Modelling dynamic traffic patterns and especially the continuously changing dependencies between different base stations, which previous studies overlook, is challenging. Traditional algorithms struggle to process large volumes of data and to extract deep insights that help elucidate mobile traffic demands with fine granularity, as well as how these demands will evolve in the future. Therefore, in this thesis we harness the powerful hierarchical feature learning abilities of Deep Learning (DL) techniques in both spatial and temporal domains and develop solutions for precise city-scale mobile traffic analysis and forecasting. Firstly, we design Spider, a mobile traffic measurement collection and reconstruction framework with a view to reducing the cost of measurement collection and inferring traffic consumption with high accuracy, despite working with sparse information. In particular, we train a reinforcement learning agent to selectively sample subsets of target mobile coverage areas and tackle the large action space problem specific to this setting. We then introduce a lightweight neural network model to reconstruct the traffic consumption based on historical sparse measurements. Our proposed framework outperforms existing solutions on a real-world mobile traffic dataset. Secondly, we design SDGNet, a handover-aware graph neural network model for long-term mobile traffic forecasting. We model the cellular network as a graph, and leverage handover frequency to capture the dependencies between base stations across time. Handover information reflects user mobility such as daily commute, which helps in increasing the accuracy of the forecasts made. We proposed dynamic graph convolution to extract features from both traffic consumption and handover data, showing that our model outperforms other benchmark graph models on a mobile traffic dataset collected by a major network operator.
- Abstract(参考訳): 動的トラフィックパターンのモデリング、特に前回の研究では見落としていた異なる基地局間の依存関係の継続的な変更は困難である。
従来のアルゴリズムは大量のデータを処理するのに苦労し、モバイルトラフィックの要求を細かな粒度で解明するのに役立つ深い洞察と、これらの要求が将来的にどのように進化するかを抽出する。
そこで本論文では,深層学習(DL)技術の空間的・時間的領域における強力な階層的特徴学習能力を活用し,都市規模の交通分析と予測のためのソリューションを開発した。
まず,移動式交通量測定収集・再構築フレームワークであるSpiderを設計し,情報不足にもかかわらず,計測収集のコストを低減し,高精度な交通量推定を行う。
特に,対象の移動範囲のサブセットを選択的にサンプリングする強化学習エージェントを訓練し,この設定に特有の大規模な行動空間問題に対処する。
次に,歴史的スパース測定に基づいて,トラフィック消費を再構築する軽量ニューラルネットワークモデルを提案する。
提案するフレームワークは,実世界のモバイルトラフィックデータセット上で既存のソリューションより優れている。
次に、長期モバイルトラフィック予測のためのハンドオーバ対応グラフニューラルネットワークモデルSDGNetを設計する。
セルラーネットワークをグラフとしてモデル化し、ハンドオーバ周波数を利用して基地局間の依存関係を時間にわたってキャプチャする。
ハンドオーバ情報は、毎日の通勤などのユーザモビリティを反映し、予測の精度を高めるのに役立つ。
我々は、トラフィック消費とハンドオーバデータの両方から特徴を抽出する動的グラフ畳み込みを提案し、我々のモデルは、主要なネットワークオペレーターが収集したモバイルトラフィックデータセット上で、他のベンチマークグラフモデルよりも優れていることを示した。
関連論文リスト
- Improving Traffic Flow Predictions with SGCN-LSTM: A Hybrid Model for Spatial and Temporal Dependencies [55.2480439325792]
本稿ではSGCN-LSTM(Signal-Enhanced Graph Convolutional Network Long Short Term Memory)モデルを提案する。
PEMS-BAYロードネットワークトラフィックデータセットの実験は、SGCN-LSTMモデルの有効性を示す。
論文 参考訳(メタデータ) (2024-11-01T00:37:00Z) - Fusion Matrix Prompt Enhanced Self-Attention Spatial-Temporal Interactive Traffic Forecasting Framework [2.9490249935740573]
FMPESTF(Fusion Matrix Prompt-Enhanced Self-Attention Space-Temporal Interactive Traffic Forecasting Framework)を提案する。
FMPESTFは、ダウンサンプリングトラフィックデータのための空間的および時間的モジュールで構成されている。
時間モデリングにおける注意機構を導入し,様々な交通シナリオに適応するための階層型時空間対話型学習を設計する。
論文 参考訳(メタデータ) (2024-10-12T03:47:27Z) - BjTT: A Large-scale Multimodal Dataset for Traffic Prediction [49.93028461584377]
従来の交通予測手法は、交通トレンドを予測するために、過去の交通データに依存している。
本研究では,交通システムを記述するテキストと生成モデルを組み合わせることで,交通生成にどのように応用できるかを考察する。
本稿では,テキスト・トラフィック生成のための最初の拡散モデルChatTrafficを提案する。
論文 参考訳(メタデータ) (2024-03-08T04:19:56Z) - Rethinking Urban Mobility Prediction: A Super-Multivariate Time Series
Forecasting Approach [71.67506068703314]
長期の都市移動予測は、都市施設やサービスの効果的管理において重要な役割を担っている。
伝統的に、都市移動データはビデオとして構成され、経度と緯度を基本的なピクセルとして扱う。
本研究では,都市におけるモビリティ予測の新たな視点について紹介する。
都市移動データを従来のビデオデータとして単純化するのではなく、複雑な時系列と見なす。
論文 参考訳(メタデータ) (2023-12-04T07:39:05Z) - Enhancing Spatiotemporal Traffic Prediction through Urban Human Activity
Analysis [6.8775337739726226]
本稿では,グラフ畳み込み深層学習アルゴリズムに基づく交通予測手法を提案する。
本研究では,宮内庁旅行調査の人的活動頻度データを活用し,活動と交通パターンの因果関係の推測能力を高める。
論文 参考訳(メタデータ) (2023-08-20T14:31:55Z) - Newell's theory based feature transformations for spatio-temporal
traffic prediction [0.0]
本稿では,交通流予測のための深層学習(DL)モデルのための交通流物理に基づく変換機能を提案する。
この変換は、Newellがターゲット位置におけるトラフィックフローの非混雑フィルタを組み込んだもので、モデルがシステムのより広範なダイナミクスを学習できるようにする。
私たちのフレームワークの重要な利点は、データが利用できない新しい場所に転送できることです。
論文 参考訳(メタデータ) (2023-07-12T06:31:43Z) - PDFormer: Propagation Delay-Aware Dynamic Long-Range Transformer for
Traffic Flow Prediction [78.05103666987655]
空間時空間グラフニューラルネットワーク(GNN)モデルは、この問題を解決する最も有望な方法の1つである。
本稿では,交通流の正確な予測を行うために,遅延を意識した動的長距離トランスフォーマー(PDFormer)を提案する。
提案手法は,最先端の性能を達成するだけでなく,計算効率の競争力も発揮できる。
論文 参考訳(メタデータ) (2023-01-19T08:42:40Z) - Few-Shot Traffic Prediction with Graph Networks using Locale as
Relational Inductive Biases [7.173242326298134]
多くの都市では、データ収集費用のため、利用可能なトラフィックデータの量は、最低限の要件以下である。
本稿では,グラフネットワーク(GN)に基づく深層学習モデルであるLocaleGnを開発した。
また、LocaleGnから学んだ知識が都市間で伝達可能であることも実証された。
論文 参考訳(メタデータ) (2022-03-08T09:46:50Z) - Learning dynamic and hierarchical traffic spatiotemporal features with
Transformer [4.506591024152763]
本稿では,空間時間グラフモデリングと長期交通予測のための新しいモデルであるTraffic Transformerを提案する。
Transformerは自然言語処理(NLP)で最も人気のあるフレームワークです。
注目重量行列を解析すれば 道路網の 影響力のある部分を見つけられる 交通網をよりよく学べる
論文 参考訳(メタデータ) (2021-04-12T02:29:58Z) - Spatial-Temporal Tensor Graph Convolutional Network for Traffic
Prediction [46.762437988118386]
本稿では,交通速度予測に対処する空間時間グラフ畳み込みネットワークを提案する。
計算負荷を軽減するために、タッカーテンソル分解を行い、テンソル畳み込みを導出する。
2つの実世界の交通速度データセットの実験は、従来の交通予測方法よりも効果的な方法を示しています。
論文 参考訳(メタデータ) (2021-03-10T15:28:07Z) - Multi-intersection Traffic Optimisation: A Benchmark Dataset and a
Strong Baseline [85.9210953301628]
交通信号の制御は、都市部の交通渋滞の緩和に必要不可欠である。
問題モデリングの複雑さが高いため、現在の作業の実験的な設定はしばしば矛盾する。
エンコーダ・デコーダ構造を用いた深層強化学習に基づく新規で強力なベースラインモデルを提案する。
論文 参考訳(メタデータ) (2021-01-24T03:55:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。