論文の概要: Courteous Behavior of Automated Vehicles at Unsignalized Intersections
via Reinforcement Learning
- arxiv url: http://arxiv.org/abs/2106.06369v1
- Date: Fri, 11 Jun 2021 13:16:48 GMT
- ステータス: 処理完了
- システム内更新日: 2021-06-14 14:03:27.754588
- Title: Courteous Behavior of Automated Vehicles at Unsignalized Intersections
via Reinforcement Learning
- Title(参考訳): 強化学習による無人区間における自動車両の丁寧な挙動
- Authors: Shengchao Yan, Tim Welschehold, Daniel B\"uscher, Wolfram Burgard
- Abstract要約: 深層強化学習を用いた混在交通状況における交差点における交通流の最適化手法を提案する。
我々の強化学習エージェントは、信号のない交差点で接続された自動運転車が道路の権利を放棄し、交通の流れを最適化するために他の車両に利する、集中型制御器のポリシーを学習する。
- 参考スコア(独自算出の注目度): 30.00761722505295
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The transition from today's mostly human-driven traffic to a purely automated
one will be a gradual evolution, with the effect that we will likely experience
mixed traffic in the near future. Connected and automated vehicles can benefit
human-driven ones and the whole traffic system in different ways, for example
by improving collision avoidance and reducing traffic waves. Many studies have
been carried out to improve intersection management, a significant bottleneck
in traffic, with intelligent traffic signals or exclusively automated vehicles.
However, the problem of how to improve mixed traffic at unsignalized
intersections has received less attention. In this paper, we propose a novel
approach to optimizing traffic flow at intersections in mixed traffic
situations using deep reinforcement learning. Our reinforcement learning agent
learns a policy for a centralized controller to let connected autonomous
vehicles at unsignalized intersections give up their right of way and yield to
other vehicles to optimize traffic flow. We implemented our approach and tested
it in the traffic simulator SUMO based on simulated and real traffic data. The
experimental evaluation demonstrates that our method significantly improves
traffic flow through unsignalized intersections in mixed traffic settings and
also provides better performance on a wide range of traffic situations compared
to the state-of-the-art traffic signal controller for the corresponding
signalized intersection.
- Abstract(参考訳): 今日の人間主導のトラフィックから純粋に自動化されたトラフィックへの移行は、徐々に進化し、近い将来に混在するトラフィックを経験することになるでしょう。
接続された自動車両は、衝突回避の改善や交通波の低減など、人力車両や交通システム全体に対して、さまざまな方法で恩恵を受けることができる。
多くの研究が交差点管理の改善、交通の重大なボトルネック、インテリジェントな交通信号や専用自動走行車によって行われている。
しかし,未標識交差点における混在交通改善の問題点は少ない。
本稿では,深層強化学習を用いた混在交通状況における交差点交通流の最適化手法を提案する。
我々の強化学習エージェントは、信号のない交差点で接続された自動運転車が道路の権利を放棄し、交通の流れを最適化するために他の車両に利する、集中型制御器のポリシーを学習する。
本手法を実装し,シミュレーションおよび実際の交通データに基づいて,交通シミュレータsumoでテストを行った。
提案手法は,混合交通環境において無信号交差点を経由するトラヒックフローを著しく改善すると同時に,信号交差点に対する最先端のトラヒック信号制御装置と比較して,幅広いトラヒック状況での性能を向上させることを実証する。
関連論文リスト
- Towards Multi-agent Reinforcement Learning based Traffic Signal Control through Spatio-temporal Hypergraphs [19.107744041461316]
交通信号制御システム(TSCS)は、インテリジェントな交通管理に不可欠なものであり、効率的な車両の流れを育んでいる。
従来のアプローチでは、道路網を標準的なグラフに単純化することが多い。
本稿では,インテリジェントトラフィック制御を実現するための新しいTSCSフレームワークを提案する。
論文 参考訳(メタデータ) (2024-04-17T02:46:18Z) - A Holistic Framework Towards Vision-based Traffic Signal Control with
Microscopic Simulation [53.39174966020085]
交通信号制御(TSC)は交通渋滞を低減し、交通の流れを円滑にし、アイドリング時間を短縮し、CO2排出量を減らすために重要である。
本研究では,道路交通の流れを視覚的観察によって調節するTSCのコンピュータビジョンアプローチについて検討する。
我々は、視覚ベースのTSCとそのベンチマークに向けて、TrafficDojoと呼ばれる総合的なトラフィックシミュレーションフレームワークを導入する。
論文 参考訳(メタデータ) (2024-03-11T16:42:29Z) - Joint Optimization of Traffic Signal Control and Vehicle Routing in
Signalized Road Networks using Multi-Agent Deep Reinforcement Learning [19.024527400852968]
信号化道路網における交通信号制御と車両ルーティングの協調最適化手法を提案する。
マルチエージェントディープ強化学習(MADRL)を用いた信号タイミングと経路選択を同時に制御することでネットワーク性能を向上させることを目的とする。
本研究は,MADRLを用いて信号制御と車両経路の最適結合ポリシーを導出する最初の試みである。
論文 参考訳(メタデータ) (2023-10-16T22:10:47Z) - DenseLight: Efficient Control for Large-scale Traffic Signals with Dense
Feedback [109.84667902348498]
交通信号制御(TSC)は、道路網における車両の平均走行時間を短縮することを目的としている。
従来のTSC手法は、深い強化学習を利用して制御ポリシーを探索する。
DenseLightは、不偏報酬関数を用いてポリシーの有効性をフィードバックする新しいRTLベースのTSC手法である。
論文 参考訳(メタデータ) (2023-06-13T05:58:57Z) - Automatic Intersection Management in Mixed Traffic Using Reinforcement
Learning and Graph Neural Networks [0.5801044612920815]
接続された自動運転は、都市交通効率を大幅に改善する可能性がある。
協調行動計画(cooperative behavior planning)は、複数の車両の動作を協調的に最適化するために用いられる。
本研究は,協調型マルチエージェント計画における強化学習とグラフに基づくシーン表現を活用することを提案する。
論文 参考訳(メタデータ) (2023-01-30T08:21:18Z) - Learning to Control and Coordinate Mixed Traffic Through Robot Vehicles at Complex and Unsignalized Intersections [33.0086333735748]
本稿では,実世界の複雑な交差点におけるRVによる混在トラフィックの制御と調整のためのマルチエージェント強化学習手法を提案する。
本手法は,1時間あたり700台の車両の現実的な交通需要の下で,わずか5%のRVを経由した渋滞発生を防止する。
提案手法は,ブラックアウトイベント,突然のRVパーセンテージ低下,V2V通信エラーに対して堅牢である。
論文 参考訳(メタデータ) (2023-01-12T21:09:58Z) - Traffic Management of Autonomous Vehicles using Policy Based Deep
Reinforcement Learning and Intelligent Routing [0.26249027950824505]
本稿では,交差点の混雑状況に応じて交通信号を調整するDRLに基づく信号制御システムを提案する。
交差点の後方の道路での渋滞に対処するため,道路ネットワーク上で車両のバランスをとるために再ルート手法を用いた。
論文 参考訳(メタデータ) (2022-06-28T02:46:20Z) - Road Network Guided Fine-Grained Urban Traffic Flow Inference [108.64631590347352]
粗いトラフィックからのきめ細かなトラフィックフローの正確な推測は、新たな重要な問題である。
本稿では,道路ネットワークの知識を活かした新しい道路対応交通流磁化器(RATFM)を提案する。
提案手法は,高品質なトラフィックフローマップを作成できる。
論文 参考訳(メタデータ) (2021-09-29T07:51:49Z) - End-to-End Intersection Handling using Multi-Agent Deep Reinforcement
Learning [63.56464608571663]
交差点をナビゲートすることは、自動運転車にとって大きな課題の1つです。
本研究では,交通標識のみが提供された交差点をナビゲート可能なシステムの実装に着目する。
本研究では,時間ステップ毎に加速度と操舵角を予測するためのニューラルネットワークの訓練に用いる,モデルフリーの連続学習アルゴリズムを用いたマルチエージェントシステムを提案する。
論文 参考訳(メタデータ) (2021-04-28T07:54:40Z) - Multi-Modal Fusion Transformer for End-to-End Autonomous Driving [59.60483620730437]
画像表現とLiDAR表現を注目で統合する,新しいマルチモードフュージョントランスフォーマであるTransFuserを提案する。
本手法は, 衝突を76%低減しつつ, 最先端駆動性能を実現する。
論文 参考訳(メタデータ) (2021-04-19T11:48:13Z) - MetaVIM: Meta Variationally Intrinsic Motivated Reinforcement Learning for Decentralized Traffic Signal Control [54.162449208797334]
交通信号制御は、交差点を横断する交通信号を調整し、地域や都市の交通効率を向上させることを目的としている。
近年,交通信号制御に深部強化学習(RL)を適用し,各信号がエージェントとみなされる有望な性能を示した。
本稿では,近隣情報を考慮した各交差点の分散化政策を潜時的に学習するメタ変動固有モチベーション(MetaVIM)RL法を提案する。
論文 参考訳(メタデータ) (2021-01-04T03:06:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。