論文の概要: Inpainting Transformer for Anomaly Detection
- arxiv url: http://arxiv.org/abs/2104.13897v1
- Date: Wed, 28 Apr 2021 17:27:44 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-29 12:44:29.923271
- Title: Inpainting Transformer for Anomaly Detection
- Title(参考訳): 異常検出用塗装変圧器
- Authors: Jonathan Pirnay, Keng Chai
- Abstract要約: Inpainting Transformer(InTra)は、多数のイメージパッチにカバーパッチを塗布するように訓練されている。
InTraは、検出とローカライゼーションのためのMVTec ADデータセットの最先端結果よりも優れている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Anomaly detection in computer vision is the task of identifying images which
deviate from a set of normal images. A common approach is to train deep
convolutional autoencoders to inpaint covered parts of an image and compare the
output with the original image. By training on anomaly-free samples only, the
model is assumed to not being able to reconstruct anomalous regions properly.
For anomaly detection by inpainting we suggest it to be beneficial to
incorporate information from potentially distant regions. In particular we pose
anomaly detection as a patch-inpainting problem and propose to solve it with a
purely self-attention based approach discarding convolutions. The proposed
Inpainting Transformer (InTra) is trained to inpaint covered patches in a large
sequence of image patches, thereby integrating information across large regions
of the input image. When learning from scratch, InTra achieves better than
state-of-the-art results on the MVTec AD [1] dataset for detection and
localization.
- Abstract(参考訳): コンピュータビジョンにおける異常検出は、通常の画像から逸脱した画像を特定するタスクである。
一般的なアプローチは、深層畳み込みオートエンコーダを訓練して、画像の被覆部分を塗布し、出力と元の画像を比較することである。
異常のないサンプルのみをトレーニングすることにより、モデルが異常領域を適切に再構築できないと仮定される。
塗布による異常検出には,潜在的に離れた地域からの情報を組み込むことが有用であることが示唆された。
特にパッチ塗装問題として異常検出を行い、畳み込みを排除した純粋自己注意に基づくアプローチで解決することを提案する。
提案した Inpainting Transformer (InTra) は,多数の画像パッチに被覆パッチを塗布し,入力画像の広い領域に情報を統合するように訓練されている。
スクラッチから学習すると、InTraは検出とローカライゼーションのためのMVTec AD [1]データセットの最先端の結果よりも優れている。
関連論文リスト
- Breaking the Frame: Image Retrieval by Visual Overlap Prediction [53.17564423756082]
本稿では,隠蔽や複雑なシーンを効果的に扱う新しい視覚的位置認識手法,VOPを提案する。
提案手法は,高コストな特徴検出とマッチングを必要とせず,可視画像区間の識別を可能にする。
論文 参考訳(メタデータ) (2024-06-23T20:00:20Z) - DiAD: A Diffusion-based Framework for Multi-class Anomaly Detection [55.48770333927732]
本稿では,拡散型異常検出(Difusion-based Anomaly Detection, DAD)フレームワークを提案する。
画素空間オートエンコーダ、安定拡散の復調ネットワークに接続する潜在空間セマンティックガイド(SG)ネットワーク、特徴空間事前学習機能抽出器から構成される。
MVTec-ADとVisAデータセットの実験は、我々のアプローチの有効性を実証している。
論文 参考訳(メタデータ) (2023-12-11T18:38:28Z) - A Prototype-Based Neural Network for Image Anomaly Detection and Localization [10.830337829732915]
本稿では,画像の異常検出と局所化のためのプロトタイプベースニューラルネットワークProtoADを提案する。
まず,自然画像に事前学習したディープネットワークにより,通常の画像のパッチの特徴を抽出する。
ProtoADは、推論速度の高い最先端の手法と比較して、競争性能が向上する。
論文 参考訳(メタデータ) (2023-10-04T04:27:16Z) - Masked Transformer for image Anomaly Localization [14.455765147827345]
パッチマスキングを用いたビジョントランスフォーマーアーキテクチャに基づく画像異常検出のための新しいモデルを提案する。
マルチレゾリューションパッチとその集合埋め込みは,モデルの性能を大幅に向上させることを示す。
提案モデルはMVTecや頭部CTなどの一般的な異常検出データセットでテストされている。
論文 参考訳(メタデータ) (2022-10-27T15:30:48Z) - AnoViT: Unsupervised Anomaly Detection and Localization with Vision
Transformer-based Encoder-Decoder [3.31490164885582]
我々は,画像パッチ間のグローバルな関係を学習することにより,通常の情報を反映する視覚変換器を用いたエンコーダデコーダモデルAnoViTを提案する。
提案モデルは,3つのベンチマークデータセット上での畳み込みモデルよりも優れた性能を示した。
論文 参考訳(メタデータ) (2022-03-21T09:01:37Z) - Self-Supervised Predictive Convolutional Attentive Block for Anomaly
Detection [97.93062818228015]
本稿では,再建に基づく機能を,新たな自己監督型予測アーキテクチャビルディングブロックに統合することを提案する。
我々のブロックは、受容領域におけるマスク領域に対する再構成誤差を最小限に抑える損失を備える。
画像やビデオの異常検出のための最先端フレームワークに組み込むことで,ブロックの汎用性を実証する。
論文 参考訳(メタデータ) (2021-11-17T13:30:31Z) - LocalTrans: A Multiscale Local Transformer Network for Cross-Resolution
Homography Estimation [52.63874513999119]
クロスレゾリューション画像アライメントは、マルチスケールギガ撮影において重要な問題である。
既存のディープ・ホモグラフィー手法は、それらの間の対応の明示的な定式化を無視し、クロスレゾリューションの課題において精度が低下する。
本稿では,マルチモーダル入力間の対応性を明確に学習するために,マルチスケール構造内に埋め込まれたローカルトランスフォーマーネットワークを提案する。
論文 参考訳(メタデータ) (2021-06-08T02:51:45Z) - A Hierarchical Transformation-Discriminating Generative Model for Few
Shot Anomaly Detection [93.38607559281601]
各トレーニングイメージのマルチスケールパッチ分布をキャプチャする階層的生成モデルを開発した。
この異常スコアは、スケール及び画像領域にわたる正しい変換のパッチベースの投票を集約して得られる。
論文 参考訳(メタデータ) (2021-04-29T17:49:48Z) - CutPaste: Self-Supervised Learning for Anomaly Detection and
Localization [59.719925639875036]
通常のトレーニングデータのみを用いて異常検知器を構築するためのフレームワークを提案する。
まず、自己教師付き深層表現を学習し、学習した表現の上に生成的1クラス分類器を構築する。
MVTec異常検出データセットに関する実証研究は,提案アルゴリズムが実世界の様々な欠陥を検出可能であることを実証している。
論文 参考訳(メタデータ) (2021-04-08T19:04:55Z) - Anomaly Detection in Medical Imaging with Deep Perceptual Autoencoders [1.7277957019593995]
画像異常検出の新しい強力な手法を提案する。
これは、再設計されたトレーニングパイプラインを備えた古典的なオートエンコーダアプローチに依存している。
複雑な医用画像解析タスクにおける最先端のアプローチよりも優れています。
論文 参考訳(メタデータ) (2020-06-23T18:45:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。