論文の概要: Stable Online Control of LTV Systems Stable Online Control of Linear
Time-Varying Systems
- arxiv url: http://arxiv.org/abs/2104.14134v1
- Date: Thu, 29 Apr 2021 06:18:49 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-30 12:43:43.096175
- Title: Stable Online Control of LTV Systems Stable Online Control of Linear
Time-Varying Systems
- Title(参考訳): LTVシステムの安定オンライン制御 線形時変システムの安定オンライン制御
- Authors: Guannan Qu, Yuanyuan Shi, Sahin Lale, Anima Anandkumar, Adam Wierman
- Abstract要約: COCO-LQは、大規模なLTVシステムの入出力安定性を保証する効率的なオンライン制御アルゴリズムである。
COCO-LQの性能を実証実験とパワーシステム周波数制御の両例で実証した。
- 参考スコア(独自算出の注目度): 49.41696101740271
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Linear time-varying (LTV) systems are widely used for modeling real-world
dynamical systems due to their generality and simplicity. Providing stability
guarantees for LTV systems is one of the central problems in control theory.
However, existing approaches that guarantee stability typically lead to
significantly sub-optimal cumulative control cost in online settings where only
current or short-term system information is available. In this work, we propose
an efficient online control algorithm, COvariance Constrained Online Linear
Quadratic (COCO-LQ) control, that guarantees input-to-state stability for a
large class of LTV systems while also minimizing the control cost. The proposed
method incorporates a state covariance constraint into the semi-definite
programming (SDP) formulation of the LQ optimal controller. We empirically
demonstrate the performance of COCO-LQ in both synthetic experiments and a
power system frequency control example.
- Abstract(参考訳): 線形時間変化(LTV)システムは、その一般化と単純さのため、現実の力学系のモデリングに広く用いられている。
LTVシステムの安定性を保証することは制御理論における中心的な問題の一つである。
しかし、安定性を保証する既存のアプローチは、現在のシステム情報や短期的なシステム情報しか利用できないオンライン設定において、非常に低い最適累積制御コストをもたらす。
本研究では,大規模LTVシステムの入出力安定性を保証し,制御コストを最小化する,効率的なオンライン制御アルゴリズムであるCOCO-LQ(Covariance Constrained Online Linear Quadratic)を提案する。
提案手法は,LQ最適制御器の半定値プログラミング(SDP)に状態共分散制約を組み込む。
我々は,COCO-LQの性能を実験および電力系統周波数制御の例で実証した。
関連論文リスト
- Neural Port-Hamiltonian Models for Nonlinear Distributed Control: An Unconstrained Parametrization Approach [0.0]
ニューラルネットワーク(NN)は、優れたパフォーマンスをもたらす制御ポリシのパラメータ化に利用することができる。
NNの小さな入力変更に対する感度は、クローズドループシステムの不安定化のリスクを引き起こす。
これらの問題に対処するために、ポート・ハミルトンシステムのフレームワークを活用して、連続時間分散制御ポリシーを設計する。
提案する分散コントローラの有効性は,非ホロノミック移動ロボットのコンセンサス制御によって実証される。
論文 参考訳(メタデータ) (2024-11-15T10:44:29Z) - Resource Optimization for Tail-Based Control in Wireless Networked Control Systems [31.144888314890597]
制御安定性の達成は、スケーラブルな無線ネットワーク制御システムにおける重要な設計課題の1つである。
本稿では,従来のLQR(Linear Quadratic Regulator)のコスト関数を拡張し,共有無線ネットワーク上で複数の動的制御システムに拡張する,テールベース制御として定義された代替制御の概念の利用について検討する。
論文 参考訳(メタデータ) (2024-06-20T13:27:44Z) - Robust stabilization of polytopic systems via fast and reliable neural
network-based approximations [2.2299983745857896]
ポリトピック不確実性を有する線形システムに対する従来の安定化制御器の高速かつ信頼性の高いニューラルネットワーク(NN)に基づく近似設計について検討する。
訓練された修正線形単位(ReLU)に基づく近似が従来の制御系に取って代わる場合、線形不確かさシステムの閉ループ安定性と性能を証明する。
論文 参考訳(メタデータ) (2022-04-27T21:58:07Z) - Stabilizing Dynamical Systems via Policy Gradient Methods [32.88312419270879]
完全に観察された力学系を安定化するためのモデルフリーなアルゴリズムを提案する。
本研究では,線形システムの安定化制御を効率よく行うことを証明する。
我々は,共通制御ベンチマークにおけるアプローチの有効性を実証的に評価した。
論文 参考訳(メタデータ) (2021-10-13T00:58:57Z) - Sparsity in Partially Controllable Linear Systems [56.142264865866636]
本研究では, 部分制御可能な線形力学系について, 基礎となる空間パターンを用いて検討する。
最適制御には無関係な状態変数を特徴付ける。
論文 参考訳(メタデータ) (2021-10-12T16:41:47Z) - Enforcing robust control guarantees within neural network policies [76.00287474159973]
本稿では、ニューラルネットワークによってパラメータ化され、ロバスト制御と同じ証明可能なロバスト性基準を適用した、一般的な非線形制御ポリシークラスを提案する。
提案手法は,複数の領域において有効であり,既存のロバスト制御法よりも平均ケース性能が向上し,(非ロバスト)深部RL法よりも最悪のケース安定性が向上した。
論文 参考訳(メタデータ) (2020-11-16T17:14:59Z) - Gaussian Process-based Min-norm Stabilizing Controller for
Control-Affine Systems with Uncertain Input Effects and Dynamics [90.81186513537777]
本稿では,この問題の制御・アフィン特性を捉えた新しい化合物カーネルを提案する。
この結果の最適化問題は凸であることを示し、ガウス過程に基づく制御リャプノフ関数第二次コーンプログラム(GP-CLF-SOCP)と呼ぶ。
論文 参考訳(メタデータ) (2020-11-14T01:27:32Z) - Learning Stabilizing Controllers for Unstable Linear Quadratic
Regulators from a Single Trajectory [85.29718245299341]
線形2次制御器(LQR)としても知られる2次コストモデルの下で線形制御器を研究する。
楕円形不確実性集合内の全ての系を安定化させる制御器を構成する2つの異なる半定値プログラム(SDP)を提案する。
高い確率で安定化コントローラを迅速に識別できる効率的なデータ依存アルゴリズムであるtextsceXplorationを提案する。
論文 参考訳(メタデータ) (2020-06-19T08:58:57Z) - Adaptive Control and Regret Minimization in Linear Quadratic Gaussian
(LQG) Setting [91.43582419264763]
我々は不確実性に直面した楽観主義の原理に基づく新しい強化学習アルゴリズムLqgOptを提案する。
LqgOptはシステムのダイナミクスを効率的に探索し、モデルのパラメータを信頼区間まで推定し、最も楽観的なモデルのコントローラをデプロイする。
論文 参考訳(メタデータ) (2020-03-12T19:56:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。