論文の概要: A General Katsuno-Mendelzon-Style Characterization of AGM Belief Base
Revision for Arbitrary Monotonic Logics
- arxiv url: http://arxiv.org/abs/2104.14512v1
- Date: Thu, 29 Apr 2021 17:24:21 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-30 12:52:26.824145
- Title: A General Katsuno-Mendelzon-Style Characterization of AGM Belief Base
Revision for Arbitrary Monotonic Logics
- Title(参考訳): 任意単調論理に対するAGM基準修正の一般Kichino-Mendelzon-Styleによる評価
- Authors: Faiq Miftakhul Falakh and Sebastian Rudolph and Kai Sauerwald
- Abstract要約: AGM ベースリビジョンを特徴付けるために,Kichino と Mendelzon のアプローチを一般化する。
我々の核となる結果は全数の割当を用いた表現定理である。
我々は,すべての論理のキャラクタリゼーションを提供し,その結果を前順序割当に補強する。
- 参考スコア(独自算出の注目度): 3.2872586139884623
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The AGM postulates by Alchourr\'{o}n, G\"{a}rdenfors, and Makinson continue
to represent a cornerstone in research related to belief change. We generalize
the approach of Katsuno and Mendelzon (KM) for characterizing AGM base revision
from propositional logic to the setting of (multiple) base revision in
arbitrary monotonic logics. Our core result is a representation theorem using
the assignment of total - yet not transitive - "preference" relations to belief
bases. We also provide a characterization of all logics for which our result
can be strengthened to preorder assignments (as in KM's original work).
- Abstract(参考訳): AGM は Alchourr\'{o}n, G\"{a}rdenfors によって仮定し、Makinson は信念の変化に関する研究の基盤を保っている。
提案論理から任意の単調論理における(多重)ベースリビジョンの設定まで、agmベースリビジョンを特徴付けるカツノとメンデルゾン(km)のアプローチを一般化する。
我々の中心的な結果は、信念ベースに対する全-しかし推移的でない-「参照」関係の割り当てを用いた表現定理である。
また、この結果が(KMのオリジナル作品のように)事前順序付けに強化されるような全ての論理の特徴づけも提供する。
関連論文リスト
- Towards Generalizable and Faithful Logic Reasoning over Natural Language via Resolution Refutation [24.584926992534346]
本稿では,GFaiR(Generalizable and Faithful Reasoner)という新しいフレームワークを提案する。
解法の難解化は、推論規則を拡張し、矛盾による証明の原理を採用することによって、全ての一階論理推論問題を解く能力を持つ。
我々のシステムは、単純なシナリオでパフォーマンスを維持しながら、複雑なシナリオで最先端のパフォーマンスを達成することで、これまでの作業より優れています。
論文 参考訳(メタデータ) (2024-04-02T06:28:44Z) - SCREWS: A Modular Framework for Reasoning with Revisions [58.698199183147935]
我々は、リビジョンを伴う推論のためのモジュラーフレームワークであるSCREWSを紹介する。
我々は、SCREWSが、共通のフレームワークの下で、いくつかの以前のアプローチを統合することを示す。
我々は,多種多様な推論タスクに基づいて,最先端のLCMを用いてフレームワークの評価を行った。
論文 参考訳(メタデータ) (2023-09-20T15:59:54Z) - Domain Generalization via Rationale Invariance [70.32415695574555]
本稿では,未確認環境においてもロバストな結果の維持を伴う領域一般化の課題を緩和する新たな視点を提供する。
本稿では,最終結果に対する要素的貢献を決定の根拠として扱い,各試料の根拠を行列として表現することを提案する。
提案手法は, 単純性に拘わらず, 様々なデータセット間で競合する結果が得られることを示す。
論文 参考訳(メタデータ) (2023-08-22T03:31:40Z) - Compositional Generalization without Trees using Multiset Tagging and
Latent Permutations [121.37328648951993]
まず、各入力トークンに複数の出力トークンをタグ付けします。
次に、新しいパラメータ化法と置換予測法を用いて、トークンを出力シーケンスに配置する。
我々のモデルは、事前訓練されたセq2seqモデルと、現実的なセマンティック解析タスクに関する先行研究より優れている。
論文 参考訳(メタデータ) (2023-05-26T14:09:35Z) - Theory of Posterior Concentration for Generalized Bayesian Additive
Regression Trees [0.685316573653194]
ベイズ木とその加法的アンサンブルに対する一般化された枠組みについて述べる。
応答分布について十分な条件を導出し, 後部が最小マックスで集中する条件を対数係数まで導出する。
論文 参考訳(メタデータ) (2023-04-25T00:52:48Z) - Rediscovering Argumentation Principles Utilizing Collective Attacks [26.186171927678874]
我々は、集合攻撃(SETAFs)による論証フレームワークへの原則に基づくアプローチを拡張した。
分析の結果、与えられたSETAF(例えば、方向性やSCC再帰性)の分解に基づく原理の検証は、通常のAFと比較して、さらなる課題をもたらすことが示された。
論文 参考訳(メタデータ) (2022-05-06T11:41:23Z) - AGM Belief Revision, Semantically [1.7403133838762446]
最小限の変化のパラダイムを実装した信念修正演算子の汎用的モデル理論的特徴付けを確立する。
我々の特徴づけはすべてのタルスキア論理、すなわち古典的なモデル理論のセマンティクスを持つ全ての論理に適用できる。
論文 参考訳(メタデータ) (2021-12-27T07:53:21Z) - Towards Principled Disentanglement for Domain Generalization [90.9891372499545]
機械学習モデルの根本的な課題は、アウト・オブ・ディストリビューション(OOD)データへの一般化である。
私たちはまず、DEC(Disentanglement-Constrained Domain Generalization)と呼ばれる制約付き最適化としてOOD一般化問題を定式化する。
この変換に基づいて、結合表現の不絡合と領域一般化のための原始双対アルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-11-27T07:36:32Z) - Learning Algebraic Recombination for Compositional Generalization [71.78771157219428]
合成一般化のための代数的組換え学習のためのエンドツーエンドニューラルモデルLeARを提案する。
主要な洞察は、意味解析タスクを潜在構文代数学と意味代数学の間の準同型としてモデル化することである。
2つの現実的・包括的構成一般化の実験は、我々のモデルの有効性を実証している。
論文 参考訳(メタデータ) (2021-07-14T07:23:46Z) - Detecting and Understanding Generalization Barriers for Neural Machine
Translation [53.23463279153577]
本稿では,未知の入力文内での一般化バリアワードの同定と理解を試みる。
本稿では,一般化バリアワードの原理的定義と,計算において抽出可能な修正版を提案する。
次に、Zh$Leftrightarrow$En NISTベンチマークで検出された一般化障壁ワードについて広範な解析を行う。
論文 参考訳(メタデータ) (2020-04-05T12:33:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。