論文の概要: Online certification of preference-based fairness for personalized
recommender systems
- arxiv url: http://arxiv.org/abs/2104.14527v1
- Date: Thu, 29 Apr 2021 17:45:27 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-30 15:45:02.650162
- Title: Online certification of preference-based fairness for personalized
recommender systems
- Title(参考訳): パーソナライズドレコメンデーションシステムのための選好ベースフェアネスのオンライン認証
- Authors: Virginie Do, Sam Corbett-Davies, Jamal Atif, Nicolas Usunier
- Abstract要約: 我々は,パーソナライズされたレコメンデーションシステムの公平さを,うらやみのない意味で評価する。
マルチアームバンドにおける純粋探索と保守的制約に基づく監査アルゴリズムを提案する。
- 参考スコア(独自算出の注目度): 20.875347023588652
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose to assess the fairness of personalized recommender systems in the
sense of envy-freeness: every (group of) user(s) should prefer their
recommendations to the recommendations of other (groups of) users. Auditing for
envy-freeness requires probing user preferences to detect potential blind
spots, which may deteriorate recommendation performance. To control the cost of
exploration, we propose an auditing algorithm based on pure exploration and
conservative constraints in multi-armed bandits. We study, both theoretically
and empirically, the trade-offs achieved by this algorithm.
- Abstract(参考訳): 各(グループ)利用者は、他の(グループ)利用者の推薦よりも、それぞれの(グループ)利用者の推薦を優先すべきである。
envy-freenessの監査には、潜在的な盲点を検出するためにユーザの好みを調べる必要があるため、レコメンデーションパフォーマンスが低下する可能性がある。
探索コストを抑えるため,本研究では,純探索と多腕包帯の保守的制約に基づく監査アルゴリズムを提案する。
このアルゴリズムによって達成されたトレードオフを理論的にも実証的にも検討した。
関連論文リスト
- A Unified Causal Framework for Auditing Recommender Systems for Ethical Concerns [40.793466500324904]
我々は、因果レンズからのレコメンデータシステム監査を見て、監査基準を定義するための一般的なレシピを提供する。
この一般的な因果監査フレームワークでは、既存の監査指標を分類し、それらのギャップを識別する。
本稿では,ユーザ自身やユーザの推奨に影響を及ぼす能力を計測する,未来と過去の評価可能性と安定性の2つのクラスを提案する。
論文 参考訳(メタデータ) (2024-09-20T04:37:36Z) - User-Controllable Recommendation via Counterfactual Retrospective and
Prospective Explanations [96.45414741693119]
本稿では,説明可能性と可制御性をシームレスに統合するユーザ制御型レコメンデータシステムを提案する。
反ファクト推論を通じて、ふりかえりと予測的な説明の両方を提供することで、ユーザーはシステムに対する制御をカスタマイズできる。
論文 参考訳(メタデータ) (2023-08-02T01:13:36Z) - A Survey on Fairness-aware Recommender Systems [59.23208133653637]
本稿では,様々なレコメンデーションシナリオにおいてフェアネスの概念を提示し,現在の進歩を包括的に分類し,レコメンデーションシステムのさまざまな段階におけるフェアネスを促進するための典型的な手法を紹介する。
次に、フェアネスを意識したレコメンデーションシステムが実業界における産業応用に与える影響について検討する。
論文 参考訳(メタデータ) (2023-06-01T07:08:22Z) - Breaking Feedback Loops in Recommender Systems with Causal Inference [99.22185950608838]
近年の研究では、フィードバックループが推奨品質を損なう可能性があり、ユーザの振る舞いを均質化している。
本稿では、因果推論を用いてフィードバックループを確実に破壊するアルゴリズムCAFLを提案する。
従来の補正手法と比較して,CAFLは推奨品質を向上することを示す。
論文 参考訳(メタデータ) (2022-07-04T17:58:39Z) - Experiments on Generalizability of User-Oriented Fairness in Recommender
Systems [2.0932879442844476]
公正を意識した推薦システムは、異なるユーザーグループを同様に扱うことを目的としている。
本稿では,ユーザ中心の公平度を再評価するフレームワークを提案する。
我々は、ユーザ(NDCGなど)とアイテム(新規性、アイテムフェアネスなど)の両方から、フレームワークの再ランク付けによる最終的なレコメンデーションを評価する。
論文 参考訳(メタデータ) (2022-05-17T12:36:30Z) - Towards Personalized Fairness based on Causal Notion [18.5897206797918]
本稿では,逆学習による対実的公正なレコメンデーションを実現するための枠組みを提案する。
提案手法は,推奨性能の高いユーザに対して,より公平なレコメンデーションを生成できる。
論文 参考訳(メタデータ) (2021-05-20T15:24:34Z) - DeepFair: Deep Learning for Improving Fairness in Recommender Systems [63.732639864601914]
レコメンダーシステムにおけるバイアス管理の欠如は、少数派が不公平な勧告を受けることになる。
本稿では,ユーザの人口統計情報を知ることなく,公平さと正確さを最適なバランスで組み合わせたDeep Learningベースの協調フィルタリングアルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-06-09T13:39:38Z) - Fairness-Aware Explainable Recommendation over Knowledge Graphs [73.81994676695346]
ユーザのアクティビティのレベルに応じて異なるグループのユーザを分析し、異なるグループ間での推奨パフォーマンスにバイアスが存在することを確認する。
不活性なユーザは、不活性なユーザのためのトレーニングデータが不十分なため、不満足なレコメンデーションを受けやすい可能性がある。
本稿では、知識グラフに対する説明可能な推奨という文脈で、この問題を緩和するために再ランク付けすることで、公平性に制約されたアプローチを提案する。
論文 参考訳(メタデータ) (2020-06-03T05:04:38Z) - Survey for Trust-aware Recommender Systems: A Deep Learning Perspective [48.2733163413522]
信頼できるレコメンデーションシステムを採用することが重要になります。
本調査では,信頼を意識したレコメンデータシステムの3つのカテゴリについて概説する。
論文 参考訳(メタデータ) (2020-04-08T02:11:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。