論文の概要: PatchNR: Learning from Small Data by Patch Normalizing Flow
Regularization
- arxiv url: http://arxiv.org/abs/2205.12021v1
- Date: Tue, 24 May 2022 12:14:26 GMT
- ステータス: 処理完了
- システム内更新日: 2022-05-25 15:49:05.354969
- Title: PatchNR: Learning from Small Data by Patch Normalizing Flow
Regularization
- Title(参考訳): PatchNR: フロー正規化による小さなデータからの学習
- Authors: Fabian Altekr\"uger, Alexander Denker, Paul Hagemann, Johannes
Hertrich, Peter Maass, Gabriele Steidl
- Abstract要約: 正規化フローに基づく画像の逆問題に対する変分モデリングのための正規化器を提案する。
patchNRと呼ばれる我々の正規化器は、ごく少数の画像のパッチで学習したフローを正規化します。
- 参考スコア(独自算出の注目度): 57.37911115888587
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Learning neural networks using only a small amount of data is an important
ongoing research topic with tremendous potential for applications. In this
paper, we introduce a regularizer for the variational modeling of inverse
problems in imaging based on normalizing flows. Our regularizer, called
patchNR, involves a normalizing flow learned on patches of very few images. The
subsequent reconstruction method is completely unsupervised and the same
regularizer can be used for different forward operators acting on the same
class of images. By investigating the distribution of patches versus those of
the whole image class, we prove that our variational model is indeed a MAP
approach. Our model can be generalized to conditional patchNRs, if additional
supervised information is available. Numerical examples for low-dose CT,
limited-angle CT and superresolution of material images demonstrate that our
method provides high quality results among unsupervised methods, but requires
only few data.
- Abstract(参考訳): 少量のデータだけでニューラルネットワークを学習することは、アプリケーションにとって大きな可能性を持つ重要な研究トピックである。
本稿では,正規化フローに基づく画像の逆問題に対する変動モデリングのための正規化器を提案する。
patchNRと呼ばれる我々の正規化器は、ごく少数の画像のパッチで学習したフローを正規化します。
その後の再構成法は完全に教師なしであり、同じ画像に作用する異なるフォワード演算子に対して同じ正規化器を使用できる。
画像クラス全体に対するパッチの分布を調べることで、我々の変動モデルがMAPアプローチであることを証明する。
我々のモデルは、追加の教師付き情報がある場合、条件付きパッチンに一般化することができる。
低線量CT,リミテッドアングルCT,超解像画像の数値的な例は,本手法が教師なし手法で高品質な結果をもたらすことを示しているが,データが少ない。
関連論文リスト
- Learning from small data sets: Patch-based regularizers in inverse
problems for image reconstruction [1.1650821883155187]
機械学習の最近の進歩は、ネットワークを訓練するために大量のデータとコンピュータ能力を必要とする。
本稿は,ごく少数の画像のパッチを考慮に入れることで,小さなデータセットから学習する問題に対処する。
本稿では,Langevin Monte Carlo法を用いて後部を近似することにより,不確実な定量化を実現する方法を示す。
論文 参考訳(メタデータ) (2023-12-27T15:30:05Z) - Masked Images Are Counterfactual Samples for Robust Fine-tuning [77.82348472169335]
微調整の深層学習モデルは、分布内(ID)性能と分布外(OOD)堅牢性の間のトレードオフにつながる可能性がある。
そこで本研究では,マスク付き画像を対物サンプルとして用いて,ファインチューニングモデルのロバスト性を向上させる新しいファインチューニング手法を提案する。
論文 参考訳(メタデータ) (2023-03-06T11:51:28Z) - DOLCE: A Model-Based Probabilistic Diffusion Framework for Limited-Angle
CT Reconstruction [42.028139152832466]
Limited-Angle Computed Tomography (LACT) は、セキュリティから医療まで様々な用途で使用される非破壊的評価技術である。
DOLCEは、条件付き拡散モデルを画像として用いた、LACTのための新しいディープモデルベースのフレームワークである。
論文 参考訳(メタデータ) (2022-11-22T15:30:38Z) - Compressed Sensing MRI Reconstruction Regularized by VAEs with
Structured Image Covariance [7.544757765701024]
本稿では, 逆問題に先立って, 地動画像に基づいて学習した生成モデルをどのように利用することができるかを検討する。
可変オートエンコーダ(VAE)を用いて、画像だけでなく、各画像に対する共分散不確実性行列を生成する。
提案した学習規則化手法を,他の学習規則化手法や教師なし,教師なしのディープラーニング手法と比較した。
論文 参考訳(メタデータ) (2022-10-26T09:51:49Z) - JPEG Artifact Correction using Denoising Diffusion Restoration Models [110.1244240726802]
本稿では,DDRM(Denoising Diffusion Restoration Models)に基づいて,非線形逆問題の解法を提案する。
我々は、DDRMで使用される擬逆演算子を活用し、この概念を他の測度演算子に一般化する。
論文 参考訳(メタデータ) (2022-09-23T23:47:00Z) - Denoising Diffusion Restoration Models [110.1244240726802]
Denoising Diffusion Restoration Models (DDRM) は効率的で教師なしの後方サンプリング手法である。
DDRMの汎用性を、超高解像度、デブロアリング、インペイント、カラー化のためにいくつかの画像データセットに示す。
論文 参考訳(メタデータ) (2022-01-27T20:19:07Z) - About Explicit Variance Minimization: Training Neural Networks for
Medical Imaging With Limited Data Annotations [2.3204178451683264]
VAT(Variance Aware Training)法は、モデル損失関数に分散誤差を導入することにより、この特性を利用する。
多様な領域から得られた3つの医用画像データセットと様々な学習目標に対するVATの有効性を検証した。
論文 参考訳(メタデータ) (2021-05-28T21:34:04Z) - A Hierarchical Transformation-Discriminating Generative Model for Few
Shot Anomaly Detection [93.38607559281601]
各トレーニングイメージのマルチスケールパッチ分布をキャプチャする階層的生成モデルを開発した。
この異常スコアは、スケール及び画像領域にわたる正しい変換のパッチベースの投票を集約して得られる。
論文 参考訳(メタデータ) (2021-04-29T17:49:48Z) - CutPaste: Self-Supervised Learning for Anomaly Detection and
Localization [59.719925639875036]
通常のトレーニングデータのみを用いて異常検知器を構築するためのフレームワークを提案する。
まず、自己教師付き深層表現を学習し、学習した表現の上に生成的1クラス分類器を構築する。
MVTec異常検出データセットに関する実証研究は,提案アルゴリズムが実世界の様々な欠陥を検出可能であることを実証している。
論文 参考訳(メタデータ) (2021-04-08T19:04:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。