論文の概要: Improved Matrix Gaussian Mechanism for Differential Privacy
- arxiv url: http://arxiv.org/abs/2104.14808v1
- Date: Fri, 30 Apr 2021 07:44:53 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-03 13:28:07.494327
- Title: Improved Matrix Gaussian Mechanism for Differential Privacy
- Title(参考訳): 微分プライバシーのための行列ガウス機構の改良
- Authors: Jungang Yang, Liyao Xiang, Weiting Li, Wei Liu, Xinbing Wang
- Abstract要約: 差分プライバシー(DP)メカニズムは、従来のスカラー値ではなく、行列のような構造データのために開発されている。
本研究は,行列値DPのための改良行列ガウス機構 (IMGM) を提案し,その必要十分条件を$(varepsilon,delta) $-differential privacy とした。
行列値DPの正規ノイズ分布のうち、最適ノイズ分布はi.i.dであることが判明した。
さまざまなモデルとデータセットに関する実験も、IMGMが同じプライバシー保証で最先端のメカニズムよりもはるかに高い有用性をもたらすことを検証しています。
- 参考スコア(独自算出の注目度): 29.865497421453917
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The wide deployment of machine learning in recent years gives rise to a great
demand for large-scale and high-dimensional data, for which the privacy raises
serious concern. Differential privacy (DP) mechanisms are conventionally
developed for scalar values, not for structural data like matrices. Our work
proposes Improved Matrix Gaussian Mechanism (IMGM) for matrix-valued DP, based
on the necessary and sufficient condition of $ (\varepsilon,\delta)
$-differential privacy. IMGM only imposes constraints on the singular values of
the covariance matrices of the noise, which leaves room for design. Among the
legitimate noise distributions for matrix-valued DP, we find the optimal one
turns out to be i.i.d. Gaussian noise, and the DP constraint becomes a noise
lower bound on each element. We further derive a tight composition method for
IMGM. Apart from the theoretical analysis, experiments on a variety of models
and datasets also verify that IMGM yields much higher utility than the
state-of-the-art mechanisms at the same privacy guarantee.
- Abstract(参考訳): 近年の機械学習の広範な展開は、大規模かつ高次元のデータに対する大きな需要をもたらし、プライバシーが深刻な懸念を生じさせている。
微分プライバシー(DP)メカニズムは、行列のような構造データではなく、スカラー値のために伝統的に開発されている。
本研究は,行列値DPのための改良行列ガウス機構 (IMGM) を提案し,$ (\varepsilon,\delta) $-differential privacy の必要十分条件に基づく。
IMGMはノイズの共分散行列の特異値にのみ制約を課し、設計の余地を残している。
行列値DPの正規ノイズ分布のうち、最適ノイズ分布はi.i.dであることが判明した。
ガウス雑音であり、dp制約は各要素の雑音下限となる。
さらに、IMGMの厳密な構成法を導出する。
理論的分析とは別に、さまざまなモデルやデータセットの実験では、IMGMが同じプライバシ保証で最先端のメカニズムよりもはるかに高い実用性が得られることが確認されている。
関連論文リスト
- Improved Communication-Privacy Trade-offs in $L_2$ Mean Estimation under Streaming Differential Privacy [47.997934291881414]
既存の平均推定スキームは、通常、$L_infty$幾何に最適化され、ランダムな回転や、$L$幾何に適応するカシンの表現に依存する。
本稿では,スパシフィケーションに固有のランダム性をDPに組み込んだ,スパシフィケーションガウシアン機構の新たなプライバシ会計手法を提案する。
従来の手法とは異なり、我々の会計アルゴリズムは直接$L$幾何で動作し、ガウスの機構に迅速に収束するMSEが得られる。
論文 参考訳(メタデータ) (2024-05-02T03:48:47Z) - Privacy Amplification for the Gaussian Mechanism via Bounded Support [64.86780616066575]
インスタンスごとの差分プライバシー(pDP)やフィッシャー情報損失(FIL)といったデータ依存のプライバシ会計フレームワークは、固定されたトレーニングデータセット内の個人に対してきめ細かいプライバシー保証を提供する。
本稿では,データ依存会計下でのプライバシ保証を向上することを示すとともに,バウンドサポートによるガウス機構の簡単な修正を提案する。
論文 参考訳(メタデータ) (2024-03-07T21:22:07Z) - On the Privacy of Selection Mechanisms with Gaussian Noise [44.577599546904736]
ガウス雑音によるReport Noisy MaxとAbove Thresholdの分析を再検討する。
その結果,Report Noisy Max の純元 DP 境界と Above Threshold の純元 DP 境界を提供することが可能であることがわかった。
論文 参考訳(メタデータ) (2024-02-09T02:11:25Z) - Privacy Amplification for Matrix Mechanisms [18.13715687378337]
MMCCは、一般的な行列機構のサンプリングにより、プライバシの増幅を分析する最初のアルゴリズムである。
標準ベンチマークにおけるDP-FTRLアルゴリズムのプライバシ・ユーティリティトレードオフが大幅に改善されることを示す。
論文 参考訳(メタデータ) (2023-10-24T05:16:52Z) - Less is More: Revisiting the Gaussian Mechanism for Differential Privacy [8.89234867625102]
出力摂動による差分プライバシーは、機密データに対してクエリや計算結果をリリースするためのデファクトスタンダードとなっている。
既存のガウスのメカニズムはすべて、フルランクの共分散行列の呪いに苦しむ。
論文 参考訳(メタデータ) (2023-06-04T04:14:38Z) - Differential Privacy with Higher Utility by Exploiting Coordinate-wise Disparity: Laplace Mechanism Can Beat Gaussian in High Dimensions [9.20186865054847]
我々は、i.n.d. Gaussian と Laplace のメカニズムを研究し、これらのメカニズムがプライバシーを保証する条件を得る。
i.n.d.ノイズは, (a) 座標降下, (b) 主成分分析, (c) グループクリッピングによる深層学習における性能を向上することを示す。
論文 参考訳(メタデータ) (2023-02-07T14:54:20Z) - General Gaussian Noise Mechanisms and Their Optimality for Unbiased Mean
Estimation [58.03500081540042]
プライベート平均推定に対する古典的なアプローチは、真の平均を計算し、バイアスのないがおそらく相関のあるガウスノイズを加えることである。
すべての入力データセットに対して、集中的な差分プライバシーを満たす非バイアス平均推定器が、少なくとも多くのエラーをもたらすことを示す。
論文 参考訳(メタデータ) (2023-01-31T18:47:42Z) - Multi-Epoch Matrix Factorization Mechanisms for Private Machine Learning [18.55306294638515]
本稿では,複数のパス(エポック)をデータセット上に配置した計算ベース機械学習(ML)のための新たなDP機構を提案する。
適応ストリームに複数参加するDP機構の問題を形式化し、オンライン行列分解DP機構の非自明な拡張を導入する。
論文 参考訳(メタデータ) (2022-11-12T00:41:11Z) - A unified interpretation of the Gaussian mechanism for differential
privacy through the sensitivity index [61.675604648670095]
GMの一般的な3つの解釈、すなわち$(varepsilon, delta)$-DP, f-DP, R'enyi DPは1つのパラメータ$psi$で表現できる。
$psi$は、クエリの感度とノイズ摂動の大きさの2つの基本量をカプセル化することによって、GMとその特性を特徴付ける。
論文 参考訳(メタデータ) (2021-09-22T06:20:01Z) - Smoothed Differential Privacy [55.415581832037084]
微分プライバシー(DP)は、最悪のケース分析に基づいて広く受け入れられ、広く適用されているプライバシーの概念である。
本稿では, 祝賀されたスムーズな解析の背景にある最悪の平均ケースのアイデアに倣って, DPの自然な拡張を提案する。
サンプリング手順による離散的なメカニズムはDPが予測するよりもプライベートであるのに対して,サンプリング手順による連続的なメカニズムはスムーズなDP下では依然としてプライベートではないことが証明された。
論文 参考訳(メタデータ) (2021-07-04T06:55:45Z) - Cauchy-Schwarz Regularized Autoencoder [68.80569889599434]
変分オートエンコーダ(VAE)は、強力で広く使われている生成モデルのクラスである。
GMMに対して解析的に計算できるCauchy-Schwarz分散に基づく新しい制約対象を導入する。
本研究の目的は,密度推定,教師なしクラスタリング,半教師なし学習,顔分析における変分自動エンコーディングモデルの改善である。
論文 参考訳(メタデータ) (2021-01-06T17:36:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。