Automatically Differentiable Quantum Circuit for Many-qubit State
Preparation
- URL: http://arxiv.org/abs/2104.14949v1
- Date: Fri, 30 Apr 2021 12:22:26 GMT
- Title: Automatically Differentiable Quantum Circuit for Many-qubit State
Preparation
- Authors: Peng-Fei Zhou, Rui Hong, Shi-Ju Ran
- Abstract summary: We propose the automatically differentiable quantum circuit (ADQC) approach to efficiently prepare arbitrary quantum many-qubit states.
The circuit is optimized by updating the latent gates using back propagation to minimize the distance between the evolved and target states.
Our work sheds light on the "intelligent construction" of quantum circuits for many-qubit systems by combining with the machine learning methods.
- Score: 1.5662820454886202
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Constructing quantum circuits for efficient state preparation belongs to the
central topics in the field of quantum information and computation. As the
number of qubits grows fast, methods to derive large-scale quantum circuits are
strongly desired. In this work, we propose the automatically differentiable
quantum circuit (ADQC) approach to efficiently prepare arbitrary quantum
many-qubit states. A key ingredient is to introduce the latent gates whose
decompositions give the unitary gates that form the quantum circuit. The
circuit is optimized by updating the latent gates using back propagation to
minimize the distance between the evolved and target states. Taking the ground
states of quantum lattice models and random matrix product states as examples,
with the number of qubits where processing the full coefficients is unlikely,
ADQC obtains high fidelities with small numbers of layers $N_L \sim O(1)$.
Superior accuracy is reached compared with the existing state-preparation
approach based on the matrix product disentangler. The parameter complexity of
MPS can be significantly reduced by ADQC with the compression ratio $r \sim
O(10^{-3})$. Our work sheds light on the "intelligent construction" of quantum
circuits for many-qubit systems by combining with the machine learning methods.
Related papers
- QAdaPrune: Adaptive Parameter Pruning For Training Variational Quantum Circuits [2.3332157823623403]
emphQAdaPrune is an adaptive parameter pruning algorithm that automatically determines the threshold and then intelligently prunes the redundant and non-performing parameters.
We show that the resulting sparse parameter sets yield quantum circuits that perform comparably to the unpruned quantum circuits.
arXiv Detail & Related papers (2024-08-23T19:57:40Z) - Quantum Compiling with Reinforcement Learning on a Superconducting Processor [55.135709564322624]
We develop a reinforcement learning-based quantum compiler for a superconducting processor.
We demonstrate its capability of discovering novel and hardware-amenable circuits with short lengths.
Our study exemplifies the codesign of the software with hardware for efficient quantum compilation.
arXiv Detail & Related papers (2024-06-18T01:49:48Z) - Parallel Quantum Computing Simulations via Quantum Accelerator Platform Virtualization [44.99833362998488]
We present a model for parallelizing simulation of quantum circuit executions.
The model can take advantage of its backend-agnostic features, enabling parallel quantum circuit execution over any target backend.
arXiv Detail & Related papers (2024-06-05T17:16:07Z) - Characterizing randomness in parameterized quantum circuits through expressibility and average entanglement [39.58317527488534]
Quantum Circuits (PQCs) are still not fully understood outside the scope of their principal application.
We analyse the generation of random states in PQCs under restrictions on the qubits connectivities.
We place a connection between how steep is the increase on the uniformity of the distribution of the generated states and the generation of entanglement.
arXiv Detail & Related papers (2024-05-03T17:32:55Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEA is an in-time sparse exploration for noise-adaptive quantum circuits.
It aims to achieve two key objectives: (1) implicit circuits capacity during training and (2) noise robustness.
Our method establishes state-of-the-art results with only half the number of quantum gates and 2x time saving of circuit executions.
arXiv Detail & Related papers (2024-01-10T22:33:00Z) - Efficient Quantum Circuits based on the Quantum Natural Gradient [0.0]
Efficient preparation of arbitrary entangled quantum states is crucial for quantum computation.
We propose symmetry-conserving modified quantum approximate optimization algorithm(SCom-QAOA) circuits.
The proposed scheme enlarges the set of the initial states accessible for variational quantum algorithms and widens the scope of investigation of non-equilibrium phenomena in quantum simulators.
arXiv Detail & Related papers (2023-10-16T16:08:57Z) - Quantum process tomography of continuous-variable gates using coherent
states [49.299443295581064]
We demonstrate the use of coherent-state quantum process tomography (csQPT) for a bosonic-mode superconducting circuit.
We show results for this method by characterizing a logical quantum gate constructed using displacement and SNAP operations on an encoded qubit.
arXiv Detail & Related papers (2023-03-02T18:08:08Z) - GASP -- A Genetic Algorithm for State Preparation [0.0]
We present a genetic algorithm for state preparation (GASP) which generates relatively low-depth quantum circuits for initialising a quantum computer in a specified quantum state.
GASP can produce more efficient circuits of a given accuracy with lower depth and gate counts than other methods.
arXiv Detail & Related papers (2023-02-22T04:41:01Z) - Shallow quantum circuits for efficient preparation of Slater
determinants and correlated states on a quantum computer [0.0]
Fermionic ansatz state preparation is a critical subroutine in many quantum algorithms such as Variational Quantum Eigensolver for quantum chemistry and condensed matter applications.
Inspired by data-loading circuits developed for quantum machine learning, we propose an alternate paradigm that provides shallower, yet scalable $mathcalO(d log2N)$ two-qubit gate depth circuits to prepare such states with d-fermions.
arXiv Detail & Related papers (2023-01-18T12:43:18Z) - Initial-State Dependent Optimization of Controlled Gate Operations with
Quantum Computer [1.2019888796331233]
We introduce a new circuit called AQCEL, which aims to remove redundant controlled operations from controlled gates.
As a benchmark, the AQCEL is deployed on a quantum algorithm designed to model final state radiation in high energy physics.
We have demonstrated that the AQCEL-optimized circuit can produce equivalent final states with much smaller number of gates.
arXiv Detail & Related papers (2022-09-06T09:19:07Z) - QUANTIFY: A framework for resource analysis and design verification of
quantum circuits [69.43216268165402]
QUANTIFY is an open-source framework for the quantitative analysis of quantum circuits.
It is based on Google Cirq and is developed with Clifford+T circuits in mind.
For benchmarking purposes QUANTIFY includes quantum memory and quantum arithmetic circuits.
arXiv Detail & Related papers (2020-07-21T15:36:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.