End-to-End Chess Recognition
- URL: http://arxiv.org/abs/2310.04086v3
- Date: Thu, 14 Dec 2023 10:19:11 GMT
- Title: End-to-End Chess Recognition
- Authors: Athanasios Masouris, Jan van Gemert
- Abstract summary: Current approaches use a pipeline of separate, independent, modules such as chessboard detection, square localization, and piece classification.
We explore an end-to-end approach to directly predict the configuration from the image, thus avoiding the error accumulation of the sequential approaches.
In contrast to existing datasets that are synthetically rendered and have only limited angles, ChessReD has photographs captured from various angles using smartphone cameras.
Our approach in chess recognition on the introduced challenging benchmark dataset outperforms related approaches, successfully recognizing the chess pieces' configuration in 15.26% of ChessReD's test images.
- Score: 11.15543089335477
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Chess recognition is the task of extracting the chess piece configuration
from a chessboard image. Current approaches use a pipeline of separate,
independent, modules such as chessboard detection, square localization, and
piece classification. Instead, we follow the deep learning philosophy and
explore an end-to-end approach to directly predict the configuration from the
image, thus avoiding the error accumulation of the sequential approaches and
eliminating the need for intermediate annotations. Furthermore, we introduce a
new dataset, Chess Recognition Dataset (ChessReD), that consists of 10,800 real
photographs and their corresponding annotations. In contrast to existing
datasets that are synthetically rendered and have only limited angles, ChessReD
has photographs captured from various angles using smartphone cameras; a sensor
choice made to ensure real-world applicability. Our approach in chess
recognition on the introduced challenging benchmark dataset outperforms related
approaches, successfully recognizing the chess pieces' configuration in 15.26%
of ChessReD's test images. This accuracy may seem low, but it is ~7x better
than the current state-of-the-art and reflects the difficulty of the problem.
The code and data are available through:
https://github.com/ThanosM97/end-to-end-chess-recognition.
Related papers
- Predicting Chess Puzzle Difficulty with Transformers [0.0]
We present GlickFormer, a novel transformer-based architecture that predicts chess puzzle difficulty by approximating the Glicko-2 rating system.
The proposed model utilizes a modified ChessFormer backbone for spatial feature extraction and incorporates temporal information via factorized transformer techniques.
Results demonstrate GlickFormer's superior performance compared to the state-of-the-art ChessFormer baseline across multiple metrics.
arXiv Detail & Related papers (2024-10-14T20:39:02Z) - Amortized Planning with Large-Scale Transformers: A Case Study on Chess [11.227110138932442]
This paper uses chess, a landmark planning problem in AI, to assess performance on a planning task.
ChessBench is a large-scale benchmark of 10 million chess games with legal move and value annotations (15 billion points) provided by Stockfish.
We show that, although a remarkably good approximation can be distilled into large-scale transformers via supervised learning, perfect distillation is still beyond reach.
arXiv Detail & Related papers (2024-02-07T00:36:24Z) - Learning to Play Chess from Textbooks (LEAP): a Corpus for Evaluating
Chess Moves based on Sentiment Analysis [4.314956204483074]
This paper examines chess textbooks as a new knowledge source for enabling machines to learn how to play chess.
We developed the LEAP corpus, a first and new heterogeneous dataset with structured (chess move notations and board states) and unstructured data.
We performed empirical experiments that assess the performance of various transformer-based baseline models for sentiment analysis.
arXiv Detail & Related papers (2023-10-31T08:26:02Z) - What Can Human Sketches Do for Object Detection? [127.67444974452411]
Sketches are highly expressive, inherently capturing subjective and fine-grained visual cues.
A sketch-enabled object detection framework detects based on what textityou sketch -- textitthat zebra''
We show an intuitive synergy between foundation models (e.g., CLIP) and existing sketch models build for sketch-based image retrieval (SBIR)
In particular, we first perform independent on both sketch branches of an encoder model to build highly generalisable sketch and photo encoders.
arXiv Detail & Related papers (2023-03-27T12:33:23Z) - DeepDarts: Modeling Keypoints as Objects for Automatic Scorekeeping in
Darts using a Single Camera [75.34178733070547]
Existing multi-camera solutions for automatic scorekeeping in steel-tip darts are very expensive and thus inaccessible to most players.
We present a new approach to keypoint detection and apply it to predict dart scores from a single image taken from any camera angle.
We develop a deep convolutional neural network around this idea and use it to predict dart locations and dartboard calibration points.
arXiv Detail & Related papers (2021-05-20T16:25:57Z) - Determining Chess Game State From an Image [19.06796946564999]
This paper puts forth a new dataset synthesised from a 3D model that is an order of magnitude larger than existing ones.
A novel end-to-end chess recognition system is presented that combines traditional computer vision techniques with deep learning.
The described system achieves an error rate of 0.23% per square on the test set, 28 times better than the current state of the art.
arXiv Detail & Related papers (2021-04-30T13:02:13Z) - DeepI2P: Image-to-Point Cloud Registration via Deep Classification [71.3121124994105]
DeepI2P is a novel approach for cross-modality registration between an image and a point cloud.
Our method estimates the relative rigid transformation between the coordinate frames of the camera and Lidar.
We circumvent the difficulty by converting the registration problem into a classification and inverse camera projection optimization problem.
arXiv Detail & Related papers (2021-04-08T04:27:32Z) - DetCo: Unsupervised Contrastive Learning for Object Detection [64.22416613061888]
Unsupervised contrastive learning achieves great success in learning image representations with CNN.
We present a novel contrastive learning approach, named DetCo, which fully explores the contrasts between global image and local image patches.
DetCo consistently outperforms supervised method by 1.6/1.2/1.0 AP on Mask RCNN-C4/FPN/RetinaNet with 1x schedule.
arXiv Detail & Related papers (2021-02-09T12:47:20Z) - LiveChess2FEN: a Framework for Classifying Chess Pieces based on CNNs [0.0]
We have implemented a functional framework that automatically digitizes a chess position from an image in less than 1 second.
We have analyzed different Convolutional Neural Networks for chess piece classification and how to map them efficiently on our embedded platform.
arXiv Detail & Related papers (2020-12-12T16:48:40Z) - SCAN: Learning to Classify Images without Labels [73.69513783788622]
We advocate a two-step approach where feature learning and clustering are decoupled.
A self-supervised task from representation learning is employed to obtain semantically meaningful features.
We obtain promising results on ImageNet, and outperform several semi-supervised learning methods in the low-data regime.
arXiv Detail & Related papers (2020-05-25T18:12:33Z) - Image Matching across Wide Baselines: From Paper to Practice [80.9424750998559]
We introduce a comprehensive benchmark for local features and robust estimation algorithms.
Our pipeline's modular structure allows easy integration, configuration, and combination of different methods.
We show that with proper settings, classical solutions may still outperform the perceived state of the art.
arXiv Detail & Related papers (2020-03-03T15:20:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.