論文の概要: Differentiable Event Stream Simulator for Non-Rigid 3D Tracking
- arxiv url: http://arxiv.org/abs/2104.15139v1
- Date: Fri, 30 Apr 2021 17:58:07 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-03 13:35:47.250035
- Title: Differentiable Event Stream Simulator for Non-Rigid 3D Tracking
- Title(参考訳): 非剛性3dトラッキングのための微分可能イベントストリームシミュレータ
- Authors: Jalees Nehvi and Vladislav Golyanik and Franziska Mueller and
Hans-Peter Seidel and Mohamed Elgharib and Christian Theobalt
- Abstract要約: 我々の微分可能シミュレータは、イベントストリームから変形可能なオブジェクトの非剛性3D追跡を可能にする。
様々な種類の非剛体物体に対するアプローチの有効性を示し, 既存の非剛体3次元追跡手法と比較した。
- 参考スコア(独自算出の注目度): 82.56690776283428
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper introduces the first differentiable simulator of event streams,
i.e., streams of asynchronous brightness change signals recorded by event
cameras. Our differentiable simulator enables non-rigid 3D tracking of
deformable objects (such as human hands, isometric surfaces and general
watertight meshes) from event streams by leveraging an analysis-by-synthesis
principle. So far, event-based tracking and reconstruction of non-rigid objects
in 3D, like hands and body, has been either tackled using explicit event
trajectories or large-scale datasets. In contrast, our method does not require
any such processing or data, and can be readily applied to incoming event
streams. We show the effectiveness of our approach for various types of
non-rigid objects and compare to existing methods for non-rigid 3D tracking. In
our experiments, the proposed energy-based formulations outperform competing
RGB-based methods in terms of 3D errors. The source code and the new data are
publicly available.
- Abstract(参考訳): 本稿では,イベントストリーム,すなわち,イベントカメラが記録する非同期輝度変化信号のストリームを識別可能な最初のシミュレータを提案する。
我々の微分可能シミュレータは、解析・合成原理を利用して、イベントストリームから変形可能な物体(人手、等尺面、一般的な水密メッシュなど)の非剛性3D追跡を可能にする。
これまでのところ、手や体のような3Dの非剛体オブジェクトのイベントベースの追跡と再構築は、明示的なイベントトラジェクトリや大規模なデータセットを使用して取り組まれている。
対照的に、このメソッドはそのような処理やデータを必要とせず、入ってくるイベントストリームに容易に適用できる。
様々な種類の非剛体物体に対するアプローチの有効性を示し, 既存の非剛体3次元追跡手法と比較した。
実験で提案したエネルギーベース定式化法は, 競合するRGB法よりも3次元誤差の方が優れていた。
ソースコードと新しいデータは公開されています。
関連論文リスト
- IncEventGS: Pose-Free Gaussian Splatting from a Single Event Camera [7.515256982860307]
IncEventGSは、単一のイベントカメラを備えたインクリメンタルな3Dガウススプレイティング再構成アルゴリズムである。
我々は,IncEventGSにおける従来のSLAMパイプラインの追跡とマッピングのパラダイムを活用する。
論文 参考訳(メタデータ) (2024-10-10T16:54:23Z) - Elite-EvGS: Learning Event-based 3D Gaussian Splatting by Distilling Event-to-Video Priors [8.93657924734248]
イベントカメラは、固定フレームではなく、非同期でスパースなイベントストリームを出力するバイオインスパイアされたセンサーである。
イベントベースの新しい3DGSフレームワークであるElite-EvGSを提案する。
私たちのキーとなるアイデアは、既成のイベント・ツー・ビデオ(E2V)モデルから事前の知識を抽出して、イベントから3Dシーンを効果的に再構築することです。
論文 参考訳(メタデータ) (2024-09-20T10:47:52Z) - Inverse Neural Rendering for Explainable Multi-Object Tracking [35.072142773300655]
我々はRGBカメラから3Dマルチオブジェクト追跡をEmphInverse Rendering (IR)問題として再放送した。
我々は、本質的に形状と外観特性を歪ませる生成潜在空間上の画像損失を最適化する。
本手法の一般化とスケーリング能力は,合成データのみから生成前を学習することで検証する。
論文 参考訳(メタデータ) (2024-04-18T17:37:53Z) - EventEgo3D: 3D Human Motion Capture from Egocentric Event Streams [59.77837807004765]
本稿では,魚眼レンズを用いた一眼一眼レフカメラによる3次元モーションキャプチャーという新たな課題を紹介する。
イベントストリームは、時間分解能が高く、高速な人間の動作下での3次元モーションキャプチャーと、急速に変化する照明のための信頼性の高い手がかりを提供する。
我々のEE3Dは、リアルタイム3Dポーズ更新レートを140Hzでサポートしながら、既存のソリューションと比較して堅牢性と優れた3D精度を示す。
論文 参考訳(メタデータ) (2024-04-12T17:59:47Z) - Exploring Event-based Human Pose Estimation with 3D Event Representations [26.34100847541989]
我々は、Rasterized Event Point Cloud(Ras EPC)とDecoupled Event Voxel(DEV)の2つの3Dイベント表現を紹介した。
Ras EPCは、簡潔な時間スライス内のイベントを同じ位置で集約し、それらの3D属性を統計情報と共に保存し、メモリと計算要求を大幅に削減する。
提案手法は,DHP19公開データセット,MMHPSDデータセット,EV-3DPWデータセットで検証し,誘導駆動シーンデータセットEV-JAADと屋外収集車両によるさらなる定性検証を行った。
論文 参考訳(メタデータ) (2023-11-08T10:45:09Z) - Decaf: Monocular Deformation Capture for Face and Hand Interactions [77.75726740605748]
本稿では,単眼のRGBビデオから人間の顔と対話する人間の手を3Dで追跡する手法を提案する。
動作中の非剛性面の変形を誘発する定形物体として手をモデル化する。
本手法は,マーカーレスマルチビューカメラシステムで取得した現実的な顔変形を伴う手動・インタラクションキャプチャーデータセットに頼っている。
論文 参考訳(メタデータ) (2023-09-28T17:59:51Z) - Dual Memory Aggregation Network for Event-Based Object Detection with
Learnable Representation [79.02808071245634]
イベントベースのカメラはバイオインスパイアされたセンサーで、各ピクセルの明るさ変化を非同期に捉える。
イベントストリームは、正極性と負極性の両方のためにx-y-t座標の格子に分割され、3次元テンソル表現として柱の集合が生成される。
長メモリは適応型convLSTMの隠れ状態に符号化され、短メモリはイベントピラー間の空間的時間的相関を計算することによってモデル化される。
論文 参考訳(メタデータ) (2023-03-17T12:12:41Z) - Lifting Monocular Events to 3D Human Poses [22.699272716854967]
本稿では,非同期イベントの単一ストリームを入力として用いる新しい3次元ポーズ推定手法を提案する。
単一のイベントストリームから3D人間のポーズを学習する最初の方法を提案します。
実験により,本手法は,標準RGBとイベントベースビジョン間の性能ギャップを狭め,精度が向上することを示した。
論文 参考訳(メタデータ) (2021-04-21T16:07:12Z) - Monocular Quasi-Dense 3D Object Tracking [99.51683944057191]
周囲の物体の将来の位置を予測し、自律運転などの多くのアプリケーションで観測者の行動を計画するためには、信頼性と正確な3D追跡フレームワークが不可欠である。
移動プラットフォーム上で撮影された2次元画像のシーケンスから,移動物体を時間とともに効果的に関連付け,その全3次元バウンディングボックス情報を推定するフレームワークを提案する。
論文 参考訳(メタデータ) (2021-03-12T15:30:02Z) - EventHands: Real-Time Neural 3D Hand Reconstruction from an Event Stream [80.15360180192175]
単眼ビデオからの3d手ポーズ推定は、長年の課題である。
我々は1つのイベントカメラ、すなわち明るさ変化に反応する非同期視覚センサを使用して、初めてそれに対処する。
従来,単一のrgbカメラや深度カメラでは表示されなかった特徴がある。
論文 参考訳(メタデータ) (2020-12-11T16:45:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。