論文の概要: Where Is The Ball: 3D Ball Trajectory Estimation From 2D Monocular Tracking
- arxiv url: http://arxiv.org/abs/2506.05763v1
- Date: Fri, 06 Jun 2025 05:42:05 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-09 17:28:43.338292
- Title: Where Is The Ball: 3D Ball Trajectory Estimation From 2D Monocular Tracking
- Title(参考訳): ボールはどこにあるのか: 2次元単眼追跡による3Dボール軌道推定
- Authors: Puntawat Ponglertnapakorn, Supasorn Suwajanakorn,
- Abstract要約: 2次元追跡シーケンスから3次元球軌道推定法を提案する。
本手法は,シミュレーションデータのみを訓練しながら,最先端の性能を実現する。
本手法は,スポーツ分析や仮想リプレイにおける様々な応用を開放し,複数の軌跡を持つ実世界のシナリオに一般化することができる。
- 参考スコア(独自算出の注目度): 10.237629959021875
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present a method for 3D ball trajectory estimation from a 2D tracking sequence. To overcome the ambiguity in 3D from 2D estimation, we design an LSTM-based pipeline that utilizes a novel canonical 3D representation that is independent of the camera's location to handle arbitrary views and a series of intermediate representations that encourage crucial invariance and reprojection consistency. We evaluated our method on four synthetic and three real datasets and conducted extensive ablation studies on our design choices. Despite training solely on simulated data, our method achieves state-of-the-art performance and can generalize to real-world scenarios with multiple trajectories, opening up a range of applications in sport analysis and virtual replay. Please visit our page: https://where-is-the-ball.github.io.
- Abstract(参考訳): 2次元追跡シーケンスから3次元球軌道推定法を提案する。
2次元推定から3次元の曖昧さを克服するために、カメラの位置に依存しない新しい標準3次元表現と、重要な不変性や再計画整合性を促進する一連の中間表現を利用するLSTMベースのパイプラインを設計する。
提案手法を4つの実データセットと3つの実データセットで評価し,設計選択に関する広範囲なアブレーション研究を行った。
シミュレーションデータのみをトレーニングしているにもかかわらず,本手法は最先端の性能を達成し,複数の軌跡を持つ実世界のシナリオに一般化し,スポーツ分析や仮想リプレイの応用範囲を広げる。
ご覧ください。https://where-is-the-ball.github.io。
関連論文リスト
- TAPVid-3D: A Benchmark for Tracking Any Point in 3D [63.060421798990845]
我々は,3Dにおける任意の点の追跡作業を評価するための新しいベンチマークTAPVid-3Dを導入する。
このベンチマークは、モノクロビデオから正確な3Dの動きと表面の変形を理解する能力を改善するためのガイドポストとして機能する。
論文 参考訳(メタデータ) (2024-07-08T13:28:47Z) - Repeat and Concatenate: 2D to 3D Image Translation with 3D to 3D Generative Modeling [14.341099905684844]
本稿では,2次元X線と3次元CTライクな再構成が可能な2次元-3次元画像変換法について,簡単な手法で検討する。
我々は,潜伏空間内の複数の2次元ビューにまたがる情報を統合する既存のアプローチが,潜伏符号化中に貴重な信号情報を失うことを観察する。代わりに,2次元ビューを高チャネルの3次元ボリュームに繰り返して,簡単な3次元から3次元生成モデル問題として3次元再構成課題にアプローチする。
この方法では、再構成された3Dボリュームが、2D入力から貴重な情報を保持でき、Swin Uのチャネル状態間で渡される。
論文 参考訳(メタデータ) (2024-06-26T15:18:20Z) - PonderV2: Pave the Way for 3D Foundation Model with A Universal Pre-training Paradigm [111.16358607889609]
本稿では,効率的な3D表現の獲得を容易にするために,新しいユニバーサル3D事前学習フレームワークを提案する。
PonderV2は、11の室内および屋外ベンチマークで最先端のパフォーマンスを達成したことで、その効果が示唆された。
論文 参考訳(メタデータ) (2023-10-12T17:59:57Z) - 3D Visual Tracking Framework with Deep Learning for Asteroid Exploration [22.808962211830675]
本稿では,3次元追跡のための高精度かつリアルタイムな手法について検討する。
両眼ビデオシーケンス、深度マップ、様々な小惑星の点雲を含む、新しい大規模な3D小惑星追跡データセットが提示されている。
深層学習に基づく3DトラッキングフレームワークTrack3Dを提案する。このフレームワークは,2次元単分子トラッカーと,新しい軽量アモーダル軸整合バウンディングボックスネットワークであるA3BoxNetを備える。
論文 参考訳(メタデータ) (2021-11-21T04:14:45Z) - Monocular Quasi-Dense 3D Object Tracking [99.51683944057191]
周囲の物体の将来の位置を予測し、自律運転などの多くのアプリケーションで観測者の行動を計画するためには、信頼性と正確な3D追跡フレームワークが不可欠である。
移動プラットフォーム上で撮影された2次元画像のシーケンスから,移動物体を時間とともに効果的に関連付け,その全3次元バウンディングボックス情報を推定するフレームワークを提案する。
論文 参考訳(メタデータ) (2021-03-12T15:30:02Z) - Cylinder3D: An Effective 3D Framework for Driving-scene LiDAR Semantic
Segmentation [87.54570024320354]
大規模運転シーンのLiDARセマンティックセマンティックセグメンテーションのための最先端の手法は、しばしば2D空間の点雲を投影して処理する。
3D-to-2Dプロジェクションの問題に取り組むための簡単な解決策は、3D表現を保ち、3D空間の点を処理することである。
我々は3次元シリンダー分割と3次元シリンダー畳み込みに基づくフレームワークをCylinder3Dとして開発し,3次元トポロジの関係と運転シーンの点雲の構造を利用する。
論文 参考訳(メタデータ) (2020-08-04T13:56:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。