Light-Induced Control of Magnetic Phases in Kitaev Quantum Magnets
- URL: http://arxiv.org/abs/2105.01062v2
- Date: Thu, 4 Aug 2022 03:00:06 GMT
- Title: Light-Induced Control of Magnetic Phases in Kitaev Quantum Magnets
- Authors: Adithya Sriram and Martin Claassen
- Abstract summary: We show how driving the strongly spin-orbit coupled proximal Kitaev magnet $alpha$-RuCl$_3$ with circularly-polarized light can give rise to a novel magneto-electric effect.
tailored light pulses can nudge the material towards the elusive Kitaev quantum spin liquid as well as probe competing magnetic instabilities far from equilibrium.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Leveraging coherent light-matter interaction in solids is a promising new
direction towards control and functionalization of quantum materials, to
potentially realize regimes inaccessible in equilibrium and stabilize new or
useful states of matter. We show how driving the strongly spin-orbit coupled
proximal Kitaev magnet $\alpha$-RuCl$_3$ with circularly-polarized light can
give rise to a novel ligand-mediated magneto-electric effect that both
photo-induces a large dynamical effective magnetic field and dramatically
alters the interplay of competing isotropic and anisotropic exchange
interactions. We propose that tailored light pulses can nudge the material
towards the elusive Kitaev quantum spin liquid as well as probe competing
magnetic instabilities far from equilibrium, and predict that the transient
competition of magnetic exchange processes can be readily observed via
pump-probe spectroscopy.
Related papers
- Cavity Moiré Materials: Controlling Magnetic Frustration with Quantum Light-Matter Interaction [0.0]
We develop a theory of moir'e materials confined in a cavity consisting of thin polar van der Waals crystals.
Nontrivial quantum geometry of moir'e flat bands leads to electromagnetic vacuum dressing of electrons.
Results indicate that the cavity confinement enables one to control magnetic frustration of moir'e materials.
arXiv Detail & Related papers (2023-02-22T19:00:01Z) - Spin-selective strong light-matter coupling in a 2D hole gas-microcavity
system [0.0]
We report a selective strong light-matter interaction by harnessing a 2D gas in the quantum Hall regime coupled to a microcavity.
We provide a quantitative understanding of the phenomenon by modeling the coupling of optical transitions between Landau levels to the microcavity.
This method introduces a control tool over the spin degree of freedom in polaritonic semiconductor systems.
arXiv Detail & Related papers (2023-02-12T23:10:20Z) - Enhanced tripartite interactions in spin-magnon-mechanical hybrid
systems [0.0]
We predict a tripartite coupling mechanism in a hybrid setup comprising a single NV center and a micromagnet.
We propose to realize direct and strong tripartite interactions among single NV spins, magnons and phonons via modulating the relative motion between the NV center and the micromagnet.
arXiv Detail & Related papers (2023-01-25T06:31:27Z) - All-Optical Nuclear Quantum Sensing using Nitrogen-Vacancy Centers in
Diamond [52.77024349608834]
Microwave or radio-frequency driving poses a significant limitation for miniaturization, energy-efficiency and non-invasiveness of quantum sensors.
We overcome this limitation by demonstrating a purely optical approach to coherent quantum sensing.
Our results pave the way for highly compact quantum sensors to be employed for magnetometry or gyroscopy applications.
arXiv Detail & Related papers (2022-12-14T08:34:11Z) - Probing dynamics of a two-dimensional dipolar spin ensemble using single
qubit sensor [62.997667081978825]
We experimentally investigate individual spin dynamics in a two-dimensional ensemble of electron spins on the surface of a diamond crystal.
We show that this anomalously slow relaxation rate is due to the presence of strong dynamical disorder.
Our work paves the way towards microscopic study and control of quantum thermalization in strongly interacting disordered spin ensembles.
arXiv Detail & Related papers (2022-07-21T18:00:17Z) - Chemical tuning of spin clock transitions in molecular monomers based on
nuclear spin-free Ni(II) [52.259804540075514]
We report the existence of a sizeable quantum tunnelling splitting between the two lowest electronic spin levels of mononuclear Ni complexes.
The level anti-crossing, or magnetic clock transition, associated with this gap has been directly monitored by heat capacity experiments.
The comparison of these results with those obtained for a Co derivative, for which tunnelling is forbidden by symmetry, shows that the clock transition leads to an effective suppression of intermolecular spin-spin interactions.
arXiv Detail & Related papers (2021-03-04T13:31:40Z) - Effects of the dynamical magnetization state on spin transfer [68.8204255655161]
We show that the complex interactions between the spin-polarized electrons and the dynamical states of the local spins can be decomposed into separate processes.
Our results suggest that exquisite control of spin transfer efficiency and of the resulting dynamical magnetization states may be achievable.
arXiv Detail & Related papers (2021-01-21T22:12:03Z) - Spin Entanglement and Magnetic Competition via Long-range Interactions
in Spinor Quantum Optical Lattices [62.997667081978825]
We study the effects of cavity mediated long range magnetic interactions and optical lattices in ultracold matter.
We find that global interactions modify the underlying magnetic character of the system while introducing competition scenarios.
These allow new alternatives toward the design of robust mechanisms for quantum information purposes.
arXiv Detail & Related papers (2020-11-16T08:03:44Z) - Photon Condensation and Enhanced Magnetism in Cavity QED [68.8204255655161]
A system of magnetic molecules coupled to microwave cavities undergoes the equilibrium superradiant phase transition.
The effect of the coupling is first illustrated by the vacuum-induced ferromagnetic order in a quantum Ising model.
A transmission experiment is shown to resolve the transition, measuring the quantum electrodynamical control of magnetism.
arXiv Detail & Related papers (2020-11-07T11:18:24Z) - Coupling a mobile hole to an antiferromagnetic spin background:
Transient dynamics of a magnetic polaron [0.0]
In this work, we use a cold-atom quantum simulator to directly observe the formation dynamics and subsequent spreading of individual magnetic polarons.
Measuring the density- and spin-resolved evolution of a single hole in a 2D Hubbard insulator with short-range antiferromagnetic correlations reveals fast initial delocalization and a dressing of the spin background.
Our work enables the study of out-of-equilibrium emergent phenomena in the Fermi-Hubbard model, one dopant at a time.
arXiv Detail & Related papers (2020-06-11T17:59:54Z) - Quantum Electrodynamic Control of Matter: Cavity-Enhanced Ferroelectric
Phase Transition [0.0]
We study a dipolar quantum many-body system embedded in a cavity composed of metal mirrors.
We analyze hybridization of different types of the fundamental excitations, including dipolar phonons, cavity photons, and plasmons in metal mirrors.
Our findings suggest an intriguing possibility of inducing a superradiant-type transition via the light-matter coupling without external pumping.
arXiv Detail & Related papers (2020-03-30T18:00:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.