論文の概要: Evolving Evaluation Functions for Collectible Card Game AI
- arxiv url: http://arxiv.org/abs/2105.01115v1
- Date: Mon, 3 May 2021 18:39:06 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-05 13:00:45.675875
- Title: Evolving Evaluation Functions for Collectible Card Game AI
- Title(参考訳): カードゲームAIのための評価関数の進化
- Authors: Rados{\l}aw Miernik, Jakub Kowalski
- Abstract要約: 本研究は,機能ベースゲーム評価機能の進化における2つの重要な側面について述べる。
ゲノム表現の選択とモデルをテストするために使用される相手の選択について検討した。
私たちは、戦略カードゲームAIコンペティションで使用されるプログラミングゲーム、Regends of Code and Magicで実験をエンコードしました。
- 参考スコア(独自算出の注目度): 1.370633147306388
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this work, we presented a study regarding two important aspects of
evolving feature-based game evaluation functions: the choice of genome
representation and the choice of opponent used to test the model. We compared
three representations. One simpler and more limited, based on a vector of
weights that are used in a linear combination of predefined game features. And
two more complex, based on binary and n-ary trees. On top of this test, we also
investigated the influence of fitness defined as a simulation-based function
that: plays against a fixed weak opponent, plays against a fixed strong
opponent, and plays against the best individual from the previous population.
For a testbed, we have chosen a recently popular domain of digital collectible
card games. We encoded our experiments in a programming game, Legends of Code
and Magic, used in Strategy Card Game AI Competition. However, as the problems
stated are of general nature we are convinced that our observations are
applicable in the other domains as well.
- Abstract(参考訳): 本研究では,機能ベースのゲーム評価機能の進化において,ゲノム表現の選択とモデルテストに用いる相手の選択という2つの重要な側面について検討した。
我々は3つの表現を比較した。
1つはより単純でより限定的で、事前に定義されたゲーム特徴の線形結合に使用される重みのベクトルに基づいている。
二進木と二進木に基づく、さらに複雑な2つの木。
また,本テストでは,固定弱相手と対戦し,固定強相手と対戦し,前者から最高の個人と対戦する,シミュレーションに基づく機能として定義されたフィットネスの影響についても検討した。
テストベッドでは、最近普及したデジタル収集可能なカードゲームのドメインを選択しました。
私たちは、戦略カードゲームAIコンペティションで使用されるプログラミングゲーム、Regends of Code and Magicで実験をエンコードしました。
しかしながら、一般に述べられている問題は、我々の観察が他の領域でも適用できると確信している。
関連論文リスト
- Evolutionary Tabletop Game Design: A Case Study in the Risk Game [0.1474723404975345]
本研究は、テーブルトップゲームに対するアプローチの拡張を提案し、リスクの変種を生成することによってプロセスを評価する。
我々は、選択したパラメータを進化させる遺伝的アルゴリズムと、ゲームをテストするルールベースのエージェントを用いてこれを達成した。
結果は、より小さなマップを持つオリジナルゲームの新たなバリエーションが作成され、結果としてより短いマッチとなることを示している。
論文 参考訳(メタデータ) (2023-10-30T20:53:26Z) - Collusion Detection in Team-Based Multiplayer Games [57.153233321515984]
チームベースのマルチプレイヤーゲームにおいて,協調動作を検出するシステムを提案する。
提案手法は,ゲーム内行動パターンと組み合わせたプレイヤーの社会的関係を解析する。
次に,非教師なし学習手法であるアイソレーションフォレストによる検出を自動化する。
論文 参考訳(メタデータ) (2022-03-10T02:37:39Z) - No-Regret Learning in Time-Varying Zero-Sum Games [99.86860277006318]
固定ゼロサムゲームにおける繰り返しプレイからの学習は、ゲーム理論とオンライン学習における古典的な問題である。
提案手法は,3つの性能基準の下で,良好な保証を同時に享受できる1つのパラメータフリーアルゴリズムである。
本アルゴリズムは,ある特性を満たすブラックボックスベースラーナー群に対するメタアルゴリズムを用いた2層構造に基づく。
論文 参考訳(メタデータ) (2022-01-30T06:10:04Z) - Spatial State-Action Features for General Games [5.849736173068868]
汎用ゲームのための空間状態対応機能の設計と効率的な実装を定式化する。
これらは、局所的な状態の変数にマッチするかどうかに基づいて、アクションをインセンティブまたは非インセンティブ化するようにトレーニングできるパターンである。
任意の機能セットに対して,アクティブな機能を評価するための効率的なアプローチを提案する。
論文 参考訳(メタデータ) (2022-01-17T13:34:04Z) - Generating Diverse and Competitive Play-Styles for Strategy Games [58.896302717975445]
ターン型戦略ゲーム(Tribes)のためのプログレッシブアンプランによるPortfolio Monte Carlo Tree Searchを提案する。
品質分散アルゴリズム(MAP-Elites)を使用して異なるプレイスタイルを実現し、競争レベルを維持しながらパラメータ化する方法を示します。
その結果,このアルゴリズムは,トレーニングに用いるレベルを超えて,幅広いゲームレベルにおいても,これらの目標を達成できることが示された。
論文 参考訳(メタデータ) (2021-04-17T20:33:24Z) - On the Power of Refined Skat Selection [1.3706331473063877]
Skatは魅力的なカードゲームで、現代のAIシステムの本質的な課題の多くを示しています。
洗練されたskat評価機能に基づくハードエキスパートルールとスコアリング関数を提案する。
実験では、精巧なskat pingアルゴリズムがボットの演奏性能に与える影響を強調した。
論文 参考訳(メタデータ) (2021-04-07T08:54:58Z) - An Empirical Study on the Generalization Power of Neural Representations
Learned via Visual Guessing Games [79.23847247132345]
本研究は,視覚質問応答(VQA)のような新しいNLP下流タスクにおいて,後から実行を依頼されたとき,人工エージェントが推測ゲームでどの程度の利益を得ることができるかを検討する。
提案手法は,1) エージェントがうまく推理ゲームを模倣することを学習する教師あり学習シナリオ,2) エージェントが単独でプレイする新しい方法,すなわち,反復経験学習(SPIEL)によるセルフプレイ(Self-play)を提案する。
論文 参考訳(メタデータ) (2021-01-31T10:30:48Z) - Efficient Pure Exploration for Combinatorial Bandits with Semi-Bandit
Feedback [51.21673420940346]
コンビナーシャルバンディットはマルチアームバンディットを一般化し、エージェントが腕のセットを選択し、選択したセットに含まれる各腕の騒々しい報酬を観察します。
我々は, 最善の腕を一定の信頼度で識別する純粋爆発問題と, 応答集合の構造が動作集合の1つと異なるような, より一般的な設定に注目する。
有限多面体に対するプロジェクションフリーオンライン学習アルゴリズムに基づいて、凸的に最適であり、競争力のある経験的性能を持つ最初の計算効率の良いアルゴリズムである。
論文 参考訳(メタデータ) (2021-01-21T10:35:09Z) - Learning to Play Sequential Games versus Unknown Opponents [93.8672371143881]
学習者が最初にプレーするゲームと、選択した行動に反応する相手との連続的なゲームについて考察する。
対戦相手の対戦相手列と対戦する際,学習者に対して新しいアルゴリズムを提案する。
我々の結果には、相手の反応の正則性に依存するアルゴリズムの後悔の保証が含まれている。
論文 参考訳(メタデータ) (2020-07-10T09:33:05Z) - Evolutionary Approach to Collectible Card Game Arena Deckbuilding using
Active Genes [1.027974860479791]
アリーナゲームモードでは、各試合に先立って、プレイヤーは以前知らなかった選択肢から1枚ずつデッキ選択カードを組み立てなければならない。
そこで本研究では,遺伝子型の世代別サブシーケンスのみに対する演算子の範囲を減らすために,活性遺伝子の概念を用いた進化的アルゴリズムの変種を提案する。
論文 参考訳(メタデータ) (2020-01-05T22:46:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。