Real-time Multi-Adaptive-Resolution-Surfel 6D LiDAR Odometry using
Continuous-time Trajectory Optimization
- URL: http://arxiv.org/abs/2105.02010v1
- Date: Wed, 5 May 2021 12:14:39 GMT
- Title: Real-time Multi-Adaptive-Resolution-Surfel 6D LiDAR Odometry using
Continuous-time Trajectory Optimization
- Authors: Jan Quenzel and Sven Behnke
- Abstract summary: We propose a real-time method for 6D LiDAR odometry.
Our approach combines a continuous-time B-Spline trajectory representation with a Gaussian Mixture Model (GMM) formulation to jointly align local multi-resolution surfel maps.
A thorough experimental evaluation shows the performance of our approach on two datasets and during real-robot experiments.
- Score: 33.67478846305404
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Simultaneous Localization and Mapping (SLAM) is an essential capability for
autonomous robots, but due to high data rates of 3D LiDARs real-time SLAM is
challenging. We propose a real-time method for 6D LiDAR odometry. Our approach
combines a continuous-time B-Spline trajectory representation with a Gaussian
Mixture Model (GMM) formulation to jointly align local multi-resolution surfel
maps. Sparse voxel grids and permutohedral lattices ensure fast access to map
surfels, and an adaptive resolution selection scheme effectively speeds up
registration. A thorough experimental evaluation shows the performance of our
approach on two datasets and during real-robot experiments.
Related papers
- 3D Equivariant Pose Regression via Direct Wigner-D Harmonics Prediction [50.07071392673984]
Existing methods learn 3D rotations parametrized in the spatial domain using angles or quaternions.
We propose a frequency-domain approach that directly predicts Wigner-D coefficients for 3D rotation regression.
Our method achieves state-of-the-art results on benchmarks such as ModelNet10-SO(3) and PASCAL3D+.
arXiv Detail & Related papers (2024-11-01T12:50:38Z) - LiDAR-GS:Real-time LiDAR Re-Simulation using Gaussian Splatting [50.808933338389686]
LiDAR simulation plays a crucial role in closed-loop simulation for autonomous driving.
We present LiDAR-GS, the first LiDAR Gaussian Splatting method, for real-time high-fidelity re-simulation of LiDAR sensor scans in public urban road scenes.
Our approach succeeds in simultaneously re-simulating depth, intensity, and ray-drop channels, achieving state-of-the-art results in both rendering frame rate and quality on publically available large scene datasets.
arXiv Detail & Related papers (2024-10-07T15:07:56Z) - FAST-LIVO2: Fast, Direct LiDAR-Inertial-Visual Odometry [28.606325312582218]
We propose FAST-LIVO2, a fast, direct LiDAR-inertial-visual odometry framework to achieve accurate and robust state estimation in SLAM tasks.
FAST-LIVO2 fuses the IMU, LiDAR and image measurements efficiently through a sequential update strategy.
We show three applications of FAST-LIVO2, including real-time onboard navigation, airborne mapping, and 3D model rendering.
arXiv Detail & Related papers (2024-08-26T06:01:54Z) - GPS-Gaussian: Generalizable Pixel-wise 3D Gaussian Splatting for Real-time Human Novel View Synthesis [70.24111297192057]
We present a new approach, termed GPS-Gaussian, for synthesizing novel views of a character in a real-time manner.
The proposed method enables 2K-resolution rendering under a sparse-view camera setting.
arXiv Detail & Related papers (2023-12-04T18:59:55Z) - Generative modeling of time-dependent densities via optimal transport
and projection pursuit [3.069335774032178]
We propose a cheap alternative to popular deep learning algorithms for temporal modeling.
Our method is highly competitive compared with state-of-the-art solvers.
arXiv Detail & Related papers (2023-04-19T13:50:13Z) - MV-JAR: Masked Voxel Jigsaw and Reconstruction for LiDAR-Based
Self-Supervised Pre-Training [58.07391711548269]
Masked Voxel Jigsaw and Reconstruction (MV-JAR) method for LiDAR-based self-supervised pre-training.
Masked Voxel Jigsaw and Reconstruction (MV-JAR) method for LiDAR-based self-supervised pre-training.
arXiv Detail & Related papers (2023-03-23T17:59:02Z) - Gait Recognition in the Wild with Multi-hop Temporal Switch [81.35245014397759]
gait recognition in the wild is a more practical problem that has attracted the attention of the community of multimedia and computer vision.
This paper presents a novel multi-hop temporal switch method to achieve effective temporal modeling of gait patterns in real-world scenes.
arXiv Detail & Related papers (2022-09-01T10:46:09Z) - Sketching as a Tool for Understanding and Accelerating Self-attention
for Long Sequences [52.6022911513076]
Transformer-based models are not efficient in processing long sequences due to the quadratic space and time complexity of the self-attention modules.
We propose Linformer and Informer to reduce the quadratic complexity to linear (modulo logarithmic factors) via low-dimensional projection and row selection.
Based on the theoretical analysis, we propose Skeinformer to accelerate self-attention and further improve the accuracy of matrix approximation to self-attention.
arXiv Detail & Related papers (2021-12-10T06:58:05Z) - Efficient LiDAR Odometry for Autonomous Driving [16.22522474028277]
LiDAR odometry plays an important role in self-localization and mapping for autonomous navigation.
Recent spherical range image-based method enjoys the merits of fast nearest neighbor search by spherical mapping.
We propose a novel efficient LiDAR odometry approach by taking advantage of both non-ground spherical range image and bird's-eye-view map for ground points.
arXiv Detail & Related papers (2021-04-22T06:05:09Z) - ISALT: Inference-based schemes adaptive to large time-stepping for
locally Lipschitz ergodic systems [0.0]
We introduce a framework to construct inference-based schemes adaptive to large time-steps from data.
We show that ISALT can tolerate time-step magnitudes larger than plain numerical schemes.
It reaches optimal accuracy in the invariant measure when the time-step is medium-large.
arXiv Detail & Related papers (2021-02-25T03:51:58Z) - Robust Odometry and Mapping for Multi-LiDAR Systems with Online
Extrinsic Calibration [15.946728828122385]
This paper proposes a system to achieve robust and simultaneous extrinsic calibration, odometry, and mapping for multiple LiDARs.
We validate our approach's performance with extensive experiments on ten sequences (4.60km total length) for the calibration and SLAM.
We demonstrate that the proposed work is a complete, robust, and system for various multi-LiDAR setups.
arXiv Detail & Related papers (2020-10-27T13:51:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.