FAST-LIVO2: Fast, Direct LiDAR-Inertial-Visual Odometry
- URL: http://arxiv.org/abs/2408.14035v2
- Date: Wed, 28 Aug 2024 12:03:50 GMT
- Title: FAST-LIVO2: Fast, Direct LiDAR-Inertial-Visual Odometry
- Authors: Chunran Zheng, Wei Xu, Zuhao Zou, Tong Hua, Chongjian Yuan, Dongjiao He, Bingyang Zhou, Zheng Liu, Jiarong Lin, Fangcheng Zhu, Yunfan Ren, Rong Wang, Fanle Meng, Fu Zhang,
- Abstract summary: We propose FAST-LIVO2, a fast, direct LiDAR-inertial-visual odometry framework to achieve accurate and robust state estimation in SLAM tasks.
FAST-LIVO2 fuses the IMU, LiDAR and image measurements efficiently through a sequential update strategy.
We show three applications of FAST-LIVO2, including real-time onboard navigation, airborne mapping, and 3D model rendering.
- Score: 28.606325312582218
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper proposes FAST-LIVO2: a fast, direct LiDAR-inertial-visual odometry framework to achieve accurate and robust state estimation in SLAM tasks and provide great potential in real-time, onboard robotic applications. FAST-LIVO2 fuses the IMU, LiDAR and image measurements efficiently through an ESIKF. To address the dimension mismatch between the heterogeneous LiDAR and image measurements, we use a sequential update strategy in the Kalman filter. To enhance the efficiency, we use direct methods for both the visual and LiDAR fusion, where the LiDAR module registers raw points without extracting edge or plane features and the visual module minimizes direct photometric errors without extracting ORB or FAST corner features. The fusion of both visual and LiDAR measurements is based on a single unified voxel map where the LiDAR module constructs the geometric structure for registering new LiDAR scans and the visual module attaches image patches to the LiDAR points. To enhance the accuracy of image alignment, we use plane priors from the LiDAR points in the voxel map (and even refine the plane prior) and update the reference patch dynamically after new images are aligned. Furthermore, to enhance the robustness of image alignment, FAST-LIVO2 employs an on-demanding raycast operation and estimates the image exposure time in real time. Lastly, we detail three applications of FAST-LIVO2: UAV onboard navigation demonstrating the system's computation efficiency for real-time onboard navigation, airborne mapping showcasing the system's mapping accuracy, and 3D model rendering (mesh-based and NeRF-based) underscoring the suitability of our reconstructed dense map for subsequent rendering tasks. We open source our code, dataset and application on GitHub to benefit the robotics community.
Related papers
- LiVisSfM: Accurate and Robust Structure-from-Motion with LiDAR and Visual Cues [7.911698650147302]
LiVisSfM is an SfM-based reconstruction system that fully combines LiDAR and visual cues.
We propose a LiDAR-visual SfM method which innovatively carries out LiDAR frame registration to LiDAR voxel map in a Point-to-Gaussian residual metrics.
arXiv Detail & Related papers (2024-10-29T16:41:56Z) - LiDAR-GS:Real-time LiDAR Re-Simulation using Gaussian Splatting [50.808933338389686]
LiDAR simulation plays a crucial role in closed-loop simulation for autonomous driving.
We present LiDAR-GS, the first LiDAR Gaussian Splatting method, for real-time high-fidelity re-simulation of LiDAR sensor scans in public urban road scenes.
Our approach succeeds in simultaneously re-simulating depth, intensity, and ray-drop channels, achieving state-of-the-art results in both rendering frame rate and quality on publically available large scene datasets.
arXiv Detail & Related papers (2024-10-07T15:07:56Z) - LiDAR-NeRF: Novel LiDAR View Synthesis via Neural Radiance Fields [112.62936571539232]
We introduce a new task, novel view synthesis for LiDAR sensors.
Traditional model-based LiDAR simulators with style-transfer neural networks can be applied to render novel views.
We use a neural radiance field (NeRF) to facilitate the joint learning of geometry and the attributes of 3D points.
arXiv Detail & Related papers (2023-04-20T15:44:37Z) - Real-Time Simultaneous Localization and Mapping with LiDAR intensity [9.374695605941627]
We propose a novel real-time LiDAR intensity image-based simultaneous localization and mapping method.
Our method can run in real time with high accuracy and works well with illumination changes, low-texture, and unstructured environments.
arXiv Detail & Related papers (2023-01-23T03:59:48Z) - Learning to Simulate Realistic LiDARs [66.7519667383175]
We introduce a pipeline for data-driven simulation of a realistic LiDAR sensor.
We show that our model can learn to encode realistic effects such as dropped points on transparent surfaces.
We use our technique to learn models of two distinct LiDAR sensors and use them to improve simulated LiDAR data accordingly.
arXiv Detail & Related papers (2022-09-22T13:12:54Z) - R$^3$LIVE++: A Robust, Real-time, Radiance reconstruction package with a
tightly-coupled LiDAR-Inertial-Visual state Estimator [5.972044427549262]
Simultaneous localization and mapping (SLAM) are crucial for autonomous robots (e.g., self-driving cars, autonomous drones), 3D mapping systems, and AR/VR applications.
This work proposed a novel LiDAR-inertial-visual fusion framework termed R$3$LIVE++ to achieve robust and accurate state estimation while simultaneously reconstructing the radiance map on the fly.
arXiv Detail & Related papers (2022-09-08T09:26:20Z) - Ret3D: Rethinking Object Relations for Efficient 3D Object Detection in
Driving Scenes [82.4186966781934]
We introduce a simple, efficient, and effective two-stage detector, termed as Ret3D.
At the core of Ret3D is the utilization of novel intra-frame and inter-frame relation modules.
With negligible extra overhead, Ret3D achieves the state-of-the-art performance.
arXiv Detail & Related papers (2022-08-18T03:48:58Z) - Efficient Spatial-Temporal Information Fusion for LiDAR-Based 3D Moving
Object Segmentation [23.666607237164186]
We propose a novel deep neural network exploiting both spatial-temporal information and different representation modalities of LiDAR scans to improve LiDAR-MOS performance.
Specifically, we first use a range image-based dual-branch structure to separately deal with spatial and temporal information.
We also use a point refinement module via 3D sparse convolution to fuse the information from both LiDAR range image and point cloud representations.
arXiv Detail & Related papers (2022-07-05T17:59:17Z) - Boosting 3D Object Detection by Simulating Multimodality on Point Clouds [51.87740119160152]
This paper presents a new approach to boost a single-modality (LiDAR) 3D object detector by teaching it to simulate features and responses that follow a multi-modality (LiDAR-image) detector.
The approach needs LiDAR-image data only when training the single-modality detector, and once well-trained, it only needs LiDAR data at inference.
Experimental results on the nuScenes dataset show that our approach outperforms all SOTA LiDAR-only 3D detectors.
arXiv Detail & Related papers (2022-06-30T01:44:30Z) - End-To-End Optimization of LiDAR Beam Configuration for 3D Object
Detection and Localization [87.56144220508587]
We take a new route to learn to optimize the LiDAR beam configuration for a given application.
We propose a reinforcement learning-based learning-to-optimize framework to automatically optimize the beam configuration.
Our method is especially useful when a low-resolution (low-cost) LiDAR is needed.
arXiv Detail & Related papers (2022-01-11T09:46:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.