A scheme for universal high-dimensional quantum computation with linear
optics
- URL: http://arxiv.org/abs/2105.02748v1
- Date: Thu, 6 May 2021 15:16:18 GMT
- Title: A scheme for universal high-dimensional quantum computation with linear
optics
- Authors: Stefano Paesani, Jacob F. F. Bulmer, Alex E. Jones, Raffaele
Santagati, Anthony Laing
- Abstract summary: We show how to generate GHZ states in arbitrary dimensions and numbers of photons using linear optical circuits.
We show that universal linear optical quantum computing can be performed in arbitrary dimensions.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Photons are natural carriers of high-dimensional quantum information, and, in
principle, can benefit from higher quantum information capacity and
noise-resilience. However, schemes to generate the resources required for
high-dimensional quantum computing have so far been lacking in linear optics.
Here, we show how to generate GHZ states in arbitrary dimensions and numbers of
photons using linear optical circuits described by Fourier transform matrices.
Combining our results with recent schemes for qudit Bell measurements, we show
that universal linear optical quantum computing can be performed in arbitrary
dimensions.
Related papers
- Faithful quantum teleportation via a nanophotonic nonlinear Bell state analyzer [3.9379777965064524]
We show a nonlinear Bell state analyzer for time-bin encoded photons based on a nanophotonic cavity with efficient sum-frequency generation.
Our result demonstrates that nonlinear-optical entangling operations, empowered by our efficient nanophotonics platform, can realize faithful quantum information protocols.
arXiv Detail & Related papers (2024-11-23T03:44:06Z) - Emulating quantum computing with optical matrix multiplication [0.0]
Optical computing harnesses the speed of light to perform vector-matrix operations efficiently.
We formulate the process of photonic matrix multiplication using quantum mechanical principles.
We demonstrate a well known algorithm, namely the Deutsch-Jozsa's algorithm.
arXiv Detail & Related papers (2024-07-19T10:11:06Z) - Simulation of integrated nonlinear quantum optics: from nonlinear interferometer to temporal walk-off compensator [6.098636361994834]
We introduce a nonlinear quantum photonics simulation framework which can accurately model a variety of features such as adiabatic waveguide, material anisotropy, linear optics components, photon losses, and detectors.
We show that the proposed device scheme can enhance the squeezing parameter of photon-pair sources and the conversion efficiency of quantum frequency converters without relying on higher pump power.
arXiv Detail & Related papers (2024-02-29T16:22:13Z) - Quantum Optical Memory for Entanglement Distribution [52.77024349608834]
Entanglement of quantum states over long distances can empower quantum computing, quantum communications, and quantum sensing.
Over the past two decades, quantum optical memories with high fidelity, high efficiencies, long storage times, and promising multiplexing capabilities have been developed.
arXiv Detail & Related papers (2023-04-19T03:18:51Z) - Quantum Computation via Multiport Quantum Fourier Optical Processors [9.992810060555813]
A single photon's image possesses a vast information capacity that can be harnessed for quantum information processing.
This paper employs quantum Fourier optics to implement some key quantum logical gates that can be instrumental in optical quantum computations.
arXiv Detail & Related papers (2023-03-07T13:23:56Z) - Quantum Linear Optics via String Diagrams [0.0]
We establish a formal bridge between qubit-based and photonic quantum computing.
We do this by defining a functor from the ZX calculus to linear optical circuits.
arXiv Detail & Related papers (2022-04-27T14:47:45Z) - Efficient criteria of quantumness for a large system of qubits [58.720142291102135]
We discuss the dimensionless combinations of basic parameters of large, partially quantum coherent systems.
Based on analytical and numerical calculations, we suggest one such number for a system of qubits undergoing adiabatic evolution.
arXiv Detail & Related papers (2021-08-30T23:50:05Z) - Generation of Photonic Matrix Product States with Rydberg Atomic Arrays [63.62764375279861]
We show how one can deterministically generate photonic matrix product states with high bond and physical dimensions with an atomic array.
We develop a quantum gate and an optimal control approach to universally control the system and analyze the photon retrieval efficiency of atomic arrays.
arXiv Detail & Related papers (2020-11-08T07:59:55Z) - Entanglement transfer, accumulation and retrieval via quantum-walk-based
qubit-qudit dynamics [50.591267188664666]
Generation and control of quantum correlations in high-dimensional systems is a major challenge in the present landscape of quantum technologies.
We propose a protocol that is able to attain entangled states of $d$-dimensional systems through a quantum-walk-based it transfer & accumulate mechanism.
In particular, we illustrate a possible photonic implementation where the information is encoded in the orbital angular momentum and polarization degrees of freedom of single photons.
arXiv Detail & Related papers (2020-10-14T14:33:34Z) - Rapid characterisation of linear-optical networks via PhaseLift [51.03305009278831]
Integrated photonics offers great phase-stability and can rely on the large scale manufacturability provided by the semiconductor industry.
New devices, based on such optical circuits, hold the promise of faster and energy-efficient computations in machine learning applications.
We present a novel technique to reconstruct the transfer matrix of linear optical networks.
arXiv Detail & Related papers (2020-10-01T16:04:22Z) - Hyperentanglement in structured quantum light [50.591267188664666]
Entanglement in high-dimensional quantum systems, where one or more degrees of freedom of light are involved, offers increased information capacities and enables new quantum protocols.
Here, we demonstrate a functional source of high-dimensional, noise-resilient hyperentangled states encoded in time-frequency and vector-vortex structured modes.
We generate highly entangled photon pairs at telecom wavelength that we characterise via two-photon interference and quantum state tomography, achieving near-unity visibilities and fidelities.
arXiv Detail & Related papers (2020-06-02T18:00:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.