Effective Fine-Tuning of Vision-Language Models for Accurate Galaxy Morphology Analysis
- URL: http://arxiv.org/abs/2411.19475v1
- Date: Fri, 29 Nov 2024 05:10:47 GMT
- Title: Effective Fine-Tuning of Vision-Language Models for Accurate Galaxy Morphology Analysis
- Authors: Ruoqi Wang, Haitao Wang, Qiong Luo,
- Abstract summary: GalaxAlign is a novel method that fine-tunes pre-trained foundation models to achieve high accuracy on astronomical tasks.
Our method extends a contrastive learning architecture to align three types of data in fine-tuning.
- Score: 3.379005517804234
- License:
- Abstract: Galaxy morphology analysis involves classifying galaxies by their shapes and structures. For this task, directly training domain-specific models on large, annotated astronomical datasets is effective but costly. In contrast, fine-tuning vision foundation models on a smaller set of astronomical images is more resource-efficient but generally results in lower accuracy. To harness the benefits of both approaches and address their shortcomings, we propose GalaxAlign, a novel method that fine-tunes pre-trained foundation models to achieve high accuracy on astronomical tasks. Specifically, our method extends a contrastive learning architecture to align three types of data in fine-tuning: (1) a set of schematic symbols representing galaxy shapes and structures, (2) textual labels of these symbols, and (3) galaxy images. This way, GalaxAlign not only eliminates the need for expensive pretraining but also enhances the effectiveness of fine-tuning. Extensive experiments on galaxy classification and similarity search demonstrate that our method effectively fine-tunes general pre-trained models for astronomical tasks by incorporating domain-specific multi-modal knowledge.
Related papers
- Galaxy Classification: A machine learning approach for classifying
shapes using numerical data [0.0]
We present a machine learning model for galaxy classification using numerical data from the Galaxy Zoo project.
Our results show that our model achieves high accuracy in classifying galaxies and has the potential to significantly enhance our understanding of the formation and evolution of galaxies.
arXiv Detail & Related papers (2023-11-30T20:47:16Z) - Spiral-Elliptical automated galaxy morphology classification from
telescope images [0.40792653193642503]
We develop two novel galaxy morphology statistics, descent average and descent variance, which can be efficiently extracted from telescope galaxy images.
We utilize the galaxy image data from the Sloan Digital Sky Survey to demonstrate the effective performance of our proposed image statistics.
arXiv Detail & Related papers (2023-10-10T22:36:52Z) - Semi-Supervised Domain Adaptation for Cross-Survey Galaxy Morphology
Classification and Anomaly Detection [57.85347204640585]
We develop a Universal Domain Adaptation method DeepAstroUDA.
It can be applied to datasets with different types of class overlap.
For the first time, we demonstrate the successful use of domain adaptation on two very different observational datasets.
arXiv Detail & Related papers (2022-11-01T18:07:21Z) - Inferring Structural Parameters of Low-Surface-Brightness-Galaxies with
Uncertainty Quantification using Bayesian Neural Networks [70.80563014913676]
We show that a Bayesian Neural Network (BNN) can be used for the inference, with uncertainty, of such parameters from simulated low-surface-brightness galaxy images.
Compared to traditional profile-fitting methods, we show that the uncertainties obtained using BNNs are comparable in magnitude, well-calibrated, and the point estimates of the parameters are closer to the true values.
arXiv Detail & Related papers (2022-07-07T17:55:26Z) - Generic Lithography Modeling with Dual-band Optics-Inspired Neural
Networks [52.200624127512874]
We introduce a dual-band optics-inspired neural network design that considers the optical physics underlying lithography.
Our approach yields the first published via/metal layer contour simulation at 1nm2/pixel resolution with any tile size.
We also achieve 85X simulation speedup over traditional lithography simulator with 1% accuracy loss.
arXiv Detail & Related papers (2022-03-12T08:08:50Z) - MonoDistill: Learning Spatial Features for Monocular 3D Object Detection [80.74622486604886]
We propose a simple and effective scheme to introduce the spatial information from LiDAR signals to the monocular 3D detectors.
We use the resulting data to train a 3D detector with the same architecture as the baseline model.
Experimental results show that the proposed method can significantly boost the performance of the baseline model.
arXiv Detail & Related papers (2022-01-26T09:21:41Z) - Practical Galaxy Morphology Tools from Deep Supervised Representation
Learning [0.0]
We show that deep learning models trained to answer every Galaxy Zoo DECaLS question learn meaningful semantic representations of galaxies.
We exploit these representations to outperform existing approaches at several practical tasks crucial for investigating large galaxy samples.
arXiv Detail & Related papers (2021-10-25T08:46:16Z) - Morphological Classification of Galaxies in S-PLUS using an Ensemble of
Convolutional Networks [0.0]
We combine accurate visual classifications of the Galaxy Zoo project with emph Deep Learning methods.
A neural network model was created through an Ensemble of four other convolutional models, allowing a greater accuracy in the classification than what would be obtained with any one individual.
arXiv Detail & Related papers (2021-07-05T21:51:19Z) - Morphological classification of astronomical images with limited
labelling [0.0]
We propose an effective semi-supervised approach for galaxy morphology classification task, based on active learning of adversarial autoencoder (AAE) model.
For a binary classification problem (top level question of Galaxy Zoo 2 decision tree) we achieved accuracy 93.1% on the test part with only 0.86 millions markup actions.
Our best model with additional markup accuracy of 95.5%.
arXiv Detail & Related papers (2021-04-27T19:26:27Z) - Deep Magnification-Flexible Upsampling over 3D Point Clouds [103.09504572409449]
We propose a novel end-to-end learning-based framework to generate dense point clouds.
We first formulate the problem explicitly, which boils down to determining the weights and high-order approximation errors.
Then, we design a lightweight neural network to adaptively learn unified and sorted weights as well as the high-order refinements.
arXiv Detail & Related papers (2020-11-25T14:00:18Z) - DeepShadows: Separating Low Surface Brightness Galaxies from Artifacts
using Deep Learning [70.80563014913676]
We investigate the use of convolutional neural networks (CNNs) for the problem of separating low-surface-brightness galaxies from artifacts in survey images.
We show that CNNs offer a very promising path in the quest to study the low-surface-brightness universe.
arXiv Detail & Related papers (2020-11-24T22:51:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.