論文の概要: Pairwise Fairness for Ordinal Regression
- arxiv url: http://arxiv.org/abs/2105.03153v1
- Date: Fri, 7 May 2021 10:33:42 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-10 12:26:06.505469
- Title: Pairwise Fairness for Ordinal Regression
- Title(参考訳): 順序回帰に対するペアワイズフェアネス
- Authors: Matth\"aus Kleindessner, Samira Samadi, Muhammad Bilal Zafar,
Krishnaram Kenthapadi, Chris Russell
- Abstract要約: 我々は,以前フェアランキングで考慮されていた2つのフェアネス概念を適応させ,どちらの概念にもとづいてほぼフェアな予測者を訓練するための戦略を提案する。
我々の予測器は、スコアリング関数としきい値のセットからなるしきい値モデルから成り立っている。
提案手法は,精度-vs-fairness のトレードオフを効果的に探索することを可能にし,順序回帰の「不公平」な手法とよく比較できることを示す。
- 参考スコア(独自算出の注目度): 22.838858781036574
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We initiate the study of fairness for ordinal regression, or ordinal
classification. We adapt two fairness notions previously considered in fair
ranking and propose a strategy for training a predictor that is approximately
fair according to either notion. Our predictor consists of a threshold model,
composed of a scoring function and a set of thresholds, and our strategy is
based on a reduction to fair binary classification for learning the scoring
function and local search for choosing the thresholds. We can control the
extent to which we care about the accuracy vs the fairness of the predictor via
a parameter. In extensive experiments we show that our strategy allows us to
effectively explore the accuracy-vs-fairness trade-off and that it often
compares favorably to "unfair" state-of-the-art methods for ordinal regression
in that it yields predictors that are only slightly less accurate, but
significantly more fair.
- Abstract(参考訳): 順序回帰、または順序分類の公正性の研究を開始する。
我々は,以前フェアランキングで考慮されていた2つのフェアネス概念を適応させ,どちらの概念にもとづいてほぼフェアな予測者を訓練するための戦略を提案する。
提案手法は,スコア関数としきい値の集合からなるしきい値モデルと,スコア関数を学習するための公平な二分分類と,しきい値を選択する局所探索とからなる。
パラメータによって、予測器の精度と公正性に気を配る程度を制御できる。
大規模な実験では、我々の戦略により精度-vs-fairnessトレードオフを効果的に探求することができ、また、わずかに精度が低いがより公平な予測器が得られるという、通常回帰の「不公平」な方法と好適に比較できることが示されている。
関連論文リスト
- Editable Fairness: Fine-Grained Bias Mitigation in Language Models [52.66450426729818]
個々人の社会的偏見をきめ細かなキャリブレーションを可能にする新しいデバイアス・アプローチであるFairness Stamp(FAST)を提案する。
FASTは最先端のベースラインを超え、デバイアス性能が優れている。
これは、大きな言語モデルにおける公平性を達成するためのきめ細かいデバイアス戦略の可能性を強調している。
論文 参考訳(メタデータ) (2024-08-07T17:14:58Z) - Bayes-Optimal Fair Classification with Linear Disparity Constraints via
Pre-, In-, and Post-processing [32.5214395114507]
与えられた群フェアネス制約に対する分類誤差を最小限に抑えるため,ベイズ最適公正分類法を開発した。
人口格差、機会平等、予測平等からの逸脱など、いくつかの一般的な格差対策が双線形であることを示します。
本手法は, ほぼ最適フェアネス精度のトレードオフを達成しつつ, 相違を直接制御する。
論文 参考訳(メタデータ) (2024-02-05T08:59:47Z) - Counterfactual Fairness for Predictions using Generative Adversarial
Networks [28.65556399421874]
我々は, 対実フェアネスの下で予測を行うための, GCFN (Generative Counterfactual Fairness Network) と呼ばれる新しいディープニューラルネットワークを開発した。
本手法は, 対実的公正性の概念を保証するために数学的に保証されている。
論文 参考訳(メタデータ) (2023-10-26T17:58:39Z) - Boosting Fair Classifier Generalization through Adaptive Priority Reweighing [59.801444556074394]
より優れた一般化性を持つ性能向上フェアアルゴリズムが必要である。
本稿では,トレーニングデータとテストデータ間の分散シフトがモデル一般化性に与える影響を解消する適応的リライジング手法を提案する。
論文 参考訳(メタデータ) (2023-09-15T13:04:55Z) - When Does Confidence-Based Cascade Deferral Suffice? [69.28314307469381]
カスケードは、推論コストをサンプル毎に適応的に変化させる古典的な戦略である。
deferralルールは、シーケンス内の次の分類子を呼び出すか、または予測を終了するかを決定する。
カスケードの構造に執着しているにもかかわらず、信頼に基づく推論は実際は極めてうまく機能することが多い。
論文 参考訳(メタデータ) (2023-07-06T04:13:57Z) - Arbitrariness and Social Prediction: The Confounding Role of Variance in
Fair Classification [31.392067805022414]
異なる訓練されたモデル間での予測のばらつきは、公正なバイナリ分類における重要な、未探索のエラーの原因である。
実際には、いくつかのデータ例のばらつきは非常に大きいので、決定を効果的に任意にすることができる。
予測が任意である場合に分類を省略するアンサンブルアルゴリズムを開発した。
論文 参考訳(メタデータ) (2023-01-27T06:52:04Z) - Towards Fair Classification against Poisoning Attacks [52.57443558122475]
攻撃者が少数のサンプルを訓練データに挿入できる毒殺シナリオについて検討する。
本稿では,従来の防犯手法に適合する汎用的かつ理論的に保証された枠組みを提案する。
論文 参考訳(メタデータ) (2022-10-18T00:49:58Z) - Measuring Fairness of Text Classifiers via Prediction Sensitivity [63.56554964580627]
加速度予測感度は、入力特徴の摂動に対するモデルの予測感度に基づいて、機械学習モデルの公正度を測定する。
この計量は、群フェアネス(統計パリティ)と個人フェアネスという特定の概念と理論的に関連付けられることを示す。
論文 参考訳(メタデータ) (2022-03-16T15:00:33Z) - On the Fairness of Causal Algorithmic Recourse [36.519629650529666]
グループレベルでの公平度基準と個人レベルでの公平度基準を提案する。
ここでは,会話の公平さは予測の公平さと相補的であることを示す。
本稿では, 社会的介入によって, データ生成プロセスの公正性違反に対処できるかどうかを論じる。
論文 参考訳(メタデータ) (2020-10-13T16:35:06Z) - Towards Model-Agnostic Post-Hoc Adjustment for Balancing Ranking
Fairness and Algorithm Utility [54.179859639868646]
Bipartiteランキングは、ラベル付きデータから正の個人よりも上位の個人をランク付けするスコアリング機能を学ぶことを目的としている。
学習したスコアリング機能が、異なる保護グループ間で体系的な格差を引き起こすのではないかという懸念が高まっている。
本稿では、二部構成のランキングシナリオにおいて、それらのバランスをとるためのモデル後処理フレームワークを提案する。
論文 参考訳(メタデータ) (2020-06-15T10:08:39Z) - Fair Regression with Wasserstein Barycenters [39.818025466204055]
本稿では, 実数値関数を学習し, 実数値関数の制約を満たす問題について検討する。
予測された出力の分布は、センシティブな属性から独立することを要求する。
フェア回帰と最適輸送理論の関連性を確立し、最適なフェア予測器に対するクローズドフォーム表現を導出する。
論文 参考訳(メタデータ) (2020-06-12T16:10:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。